Showing posts with label genetics. Show all posts
Showing posts with label genetics. Show all posts

Saturday, February 15, 2025

Cloudy, With a Chance of RNA

Long RNAs play structural and functional roles in regulation of chromosome replication and expression.

One of the wonderful properties of the fruit fly as a model system of genetics and molecular biology has been its polytene chromosomes. These are hugely expanded bundles of chromosomes, replicated thousands of times, which have been observed microscopically since the late 1800's. They exist in the larval salivary gland, where huge amounts of gene expression are needed, thus the curious evolutionary solution of expanding the number of templates, not only of the gene needed, but of the entire genome. 

These chromosomes where closely mapped and investigated, almost like runic keys to the biology of the fly, especially in the day before molecular biology. Genetic translocations, loops, and other structural variations could be directly observed. The banding patterns of light, dark, expanded, and compressed regions were mapped in excruciating detail, and mapped to genetic correlates and later to gene expression patterns. These chromosomes provided some of the first suggestions of heterochromatin- areas of the genome whose expression is shut down (repressed). They may have genes that are shut off, but they may also be structural components, such as centromeres and telomeres. These latter areas tend to have very repetitive DNA sequences, inherited from old transposons and other junk. 

A diagram of polytene chromosomes, bunched up by binding at the centromeres. The banding pattern is reproducible and represents differences in proteins bound to various areas of the genome, and gene activity.

It has become apparent that RNA plays a big role in managing these areas of our chromosomes. The classic case is the XIST RNA, which is a long (17,000 bases) non-coding RNA that forms a scaffold by binding to lots of "heterogeneous" RNA-binding proteins, and most importantly, stays bound near the site of its creation, on the X chromosome. Through a regulatory cascade that is only partly understood, the XIST RNA is turned off on one of the X chromosomes, and turned on the other one (in females), leading the XIST molecule to glue itself to its chromosome of origin, and then progressively coat the rest of that chromosome and turn it off. That is, one entire X is turned into heterochromatin by a process that requires XIST scaffolding all along its length. That results in "dosage compensation" in females, where one X is turned off in all their cells, allowing dosage (that is, the gene expression) of its expressed genes to approximate those of males, despite the presence of the extra X chromosome. Dosage is very important, as shown by Down Syndrome, which originates from a duplication of one of the smallest human chromosomes, creating imbalanced gene dosage.

A recent paper described work on "ASAR" RNAs, which similarly arise from highly repetitive areas of human chromosomes, are extremely long (180,000 bases), and control expression and chromosome replication in an allele-specific way on (at least) several non-X chromosomes. These RNAs, again, like XIST, specifically bind a bunch of heternuclear binding proteins, which is presumably central to their function. Indeed, these researchers dissected out the 7,000 base segment of ASAR6 that is densest in protein binding sites, and find that, when transplanted into a new location, this segment has dramatic effects on chromosome condensation and replication, as shown below.

The intact 7,000 base core of ASAR6 was transplanted into chromosome 5, and mitotic chromosomes were spread and stained. The blue is a general DNA stain. The green is a stain for newly synthesized DNA, and the red is a specific probe for the ASAR6 sequence. One can see on the left that this chromosome 5 is replicating more than any other chromosome, and shows delayed condensation. In contrast, the right frame shows a control experiment where an anti-sense version of the ASAR6 7,000 base core was transplanted to chromosome 5. The antisense sequence not only does not have the wild-type function, but also inhibits any molecule that does by tightly binding to it. Here, the chromosome it resides on (arrows) is splendidly condensed, and hardly replicating at all (no green color).


Why RNA? It has become clear over the last two decades that our cells, and particularly our nuclei, are swimming with RNAs. Most of the genome is transcribed in some way or other, despite a tiny proportion of it coding for anything. 95% of the RNAs that are transcribed never get out of the nucleus. There has been a growing zoo of different kinds of non-coding RNAs functioning in translational control, ribosomal maturation, enhancer function, and here, in chromosome management. While proteins tend to be compact bundles, RNAs can be (as these ASARs are) huge, especially in one dimension, and thus capable of physically scaffolding the kinds of structures that can control large regions of chromosomes.

Chromosomes are sort of cloudy regions in our cells, long a focus of observation and clearly also a focus of countless proteins and now RNAs that bind, wind, disentangle, transcribe, replicate, and congregate around them. What all these RNAs and especially the various heteronuclear proteins actually do remains pretty unclear. But they form a sort of organelle that, while it protects and manages our DNA, remarkably also allows access to it for sequence-specific binding proteins and the many processes that plow through it.

"In addition, recent studies have proposed that abundant nuclear proteins such as HNRNPU nonspecifically interact with ‘RNA debris’ that creates a dynamic nuclear mesh that regulates interphase chromatin structure."


Saturday, February 1, 2025

Proving Evolution the Hard Way

Using genomes and codon ratios to estimate selective pressures was so easy... why is it not working?

The fruits of evolution surround us with abundance, from the tallest tree to the tiniest bacterium, and the viruses of that bacterium. But the process behind it is not immediately evident. It was relatively late in the enlightenment before Darwin came up with the stroke of insight that explained it all. Yet that mechanism of natural selection remains an abstract concept requiring an analytical mind and due respect for very inhuman scales of the time and space in play. Many people remain dumbfounded, and in denial, while evolutionary biology has forged ahead, powered by new discoveries in geology and molecular biology.

A recent paper (with review) offered a fascinating perspective, both critical and productive, on the study of evolutionary biology. It deals with the opsin protein that hosts the visual pigment 11-cis-retinal, by which we see. The retinal molecule is the same across all opsins, but different opsin proteins can "tune" the light wavelength of greatest sensitivity, creating the various retinal-opsin combinations for all visual needs, across the cone cells and rod cells. This paper considered the rhodopsin version of opsin, which we use in rod cells to perceive dim light. They observed that in fish species, the sensitivity of rhodopsin has been repeatedly adjusted to accommodate light at different depths of the water column. At shallow levels, sunlight is similar to what we see, and rhodopsin is tuned to about 500 nm, while deeper down, when the light is more blue-ish, rhodopsin is tuned towards about 480 nm maximum sensitivity. There are also special super-deep fish who see by their own red-tinged bioluminescence, and their rhodopsins are tuned to 526 nm. 

This "spectrum" of sensitivities of rhodopsin has a variety of useful scientific properties. First, the evolutionary logic is clear enough, matching the fish's vision to its environment. Second, the molecular structure of these opsins is well-understood, the genes are sequenced, and the history can be reconstructed. Third, the opsin properties can be objectively measured, unlike many sequence variations which affect more qualitative, difficult-to-observe, or impossible-to-observe biological properties. The authors used all this to carefully reconstruct exactly which amino acids in these rhodopsins were the important ones that changed between major fish lineages, going back about 500 million years.

The authors' phylogenetic tree of fish and other species they analyzed rhodopsin molecules from. Note how mammals occupy the bottom small branch, indicating how deeply the rest of the tree reaches. The numbers in the nodes indicate the wavelength sensitivity of each (current or imputed) rhodopsin. Many branches carry the author's inference, from a reconstructed and measured protein molecule, of what precise changes happened, via positive selection, to get that lineage.

An alternative approach to evolutionary inference is a second target of these authors. That is a codon-based method, that evaluates the rate of change of DNA sites under selection versus sites not under selection. In protein coding genes (such as rhodopsin), every amino acid is encoded by a triplet of DNA nucleotides, per the genetic code. With 64 codons for ~20 amino acids, it is a redundant code where many DNA changes do not change the protein sequence. These changes are called "synonymous". If one studies the rate of change of synonymous sites in the DNA, (which form sort of a control in the experiment), compared with the rate of change of non-synonymous sites, one can get a sense of evolution at work. Changing the protein sequence is something that is "seen" by natural selection, and especially at important positions in the protein, some of which are "conserved" over billions of years. Such sites are subject to "negative" selection, which to say rapid elimination due to the deleterious effect of that DNA and protein change.

Mutations in protein coding sequence can be synonymous, (bottom), with no effect, or non-synonymous (middle two cases), changing the resulting protein sequence and having some effect that may be biologically significant, thus visible to natural selection.


This analysis has been developed into a high art, also being harnessed to reveal "positive" selection. In this scenario, if the rate of change of the non-synonymous DNA sites is higher than that of the synonymous sites, or even just higher than one would expect by random chance, one can conclude that these non-synonymous sites were not just not being selected against, but were being selected for, an instance of evolution establishing change for the sake of improvement, instead of avoiding change, as usual.

Now back to the rhodopsin study. These authors found that a very small number of amino acids in this protein, only 15, were the ones that influenced changes to the spectral sensitivity of these protein complexes over evolutionary time. Typically only two or three changes occurred over a shift in sensitivity in a particular lineage, and would have been the ones subject to natural selection, with all the other changes seen in the sequence being unrelated, either neutral or selected for other purposes. It is a tour de force of structural analysis, biochemical measurement, and historical reconstruction to come up with this fully explanatory model of the history of piscene rhodopsins. 

But then they went on to compare what they found with what the codon-based methods had said about the matter. And they found that there was no overlap whatsover. The amino acids identified by the "positive selection" codon based methods were completely different than the ones they had found by spectral analysis and phylogenetic reconstruction over the history of fish rhodopsins. The accompanying review is particularly harsh about the pseudoscientific nature of this codon analysis, rubbishing the entire field. There have been other, less drastic, critiques as well.

But there is method to all this madness. The codon based methods were originally conceived in the analysis of closely related lineages. Specifically, various Drosophia (fly) species that might have diverged over a few million years. On this time scale, positive selection has two effects. One is that a desirable amino acid (or other) variation is selected for, and thus swept to fixation in the population. The other, and corresponding effect, is that all the other variations surrounding this desirable variation (that is, which are nearby on the same chromosome) are likewise swept to fixation (as part of what is called a haplotype). That dramatically reduces the neutral variation in this region of the genome. Indeed, the effect on neutral alleles (over millions of nearby base pairs) is going to vastly overwhelm the effect from the newly established single variant that was the object of positive selection, and this imbalance will be stronger the stronger the positive selection. In the limit case, the entire genomes of those without the new positive trait/allele will be eliminated, leaving no variation at all.

Yet, on the longer time scale, over hundreds of millions of years, as was the scope of visual variation in fish, all these effects on the neutral variation level wash out, as mutation and variation processes resume, after the positively selected allele is fixed in the population. So my view of this tempest in an evolutionary teapot is that these recent authors (and whatever other authors were deploying codon analysis against this rhodopsin problem) are barking up the wrong tree, mistaking the proper scope of these analyses. Which, after all, focus on the ratio between synonymous and non-synonymous change in the genome, and thus intrinsically on recent change, not deep change in genomes.


  • That all-American mix of religion, grift, and greed.
  • Christians are now in charge.
  • Mechanisms of control by the IMF and the old economic order.
  • A new pain med, thanks to people who know what they are doing.

Saturday, December 21, 2024

Inside the Process of Speciation

Adaptive radiations are messy, so no wonder we have a hard time reconstructing them.

Darwin drew a legendary diagram in his great book, of lineage trees tracing speciation from ancestors to descendants. It was just a sketch, and naturally had clear fork points where one species turns into two. But in real life, speciation is messier, with range overlaps, inter-breeding, and difficulties telling species apart. Ornithologists are still lumping and splitting species to this day, as more data come in about ranges, genetics, sub-populations, breeding behavior, etc. And if defining existing species is difficult, defining exactly where they split in the distant past is even harder.

Darwin's notebook sketch of speciation, from ancestors ... to descendants.

The advent of molecular data from genomes gave a tremendous boost to the amount of information on which to base phylogenetic inferences. It gave us a whole new domain of life, for one thing. And it has helped sharpen countless phylogenies that not been fully specified by fossil and morphological data. But still, difficulties remain. The deepest and most momentous divergences, like the origin of life itself, and the origin of eukaryotes, remain shrouded in hazy and inconclusive trees, as do many other lineages, such as the origin of birds. It seems to be a rule that when a group of organisms undergoes rapid evolution / speciation, the tree they are on (as reconstructed by us from contemporary data) becomes correspondingly unclear and unresolved, difficult to trace through that tumultuous time. In part this is simply a matter of timing. If dramatic events happened within a few million years a billion years ago, our ability to resolve the sequence of those events is going to be weak in any case, compared to the same events spread out over a hundred million years.

A recent paper documented some of this about phylogeny in general, by correlating times of morphological change with times of phylogenetic haziness, which they term "gene-tree conflict". That is to say, if one samples genes across genomes to draw phylogenetic trees, different genes will give different trees. And this phenomenon increases right when there are other signs of rapid evolutionary change, i.e. changing morphology.

"One insight gleaned from phylogenomics is that gene-tree conflict, frequently caused by population-level processes, is often rampant during the origin of major lineages."

They identify three mechanisms behind this observation: incomplete lineage sorting (ILS), hybridization, and rapid evolution. Obviously, these need to be unpacked a bit. ILS is a natural consequence of the fact that species arise not from single organisms, but from populations. Gene mutations that differentiate the originating and future species happen all over the respective genomes, and enter the future lineage at different times. Some may happen well after the putative speciation event, and become fixed (that is, prevalent) later in that species. Others may have happened well before the speciation event, and die off in most of the descending lineages. The fact is that not every gene is going to march in lock step with the speciation event, in terms of its variants. So phylogenetic inference is best done using lots of genes plus statistical methods to arrive at the most likely explanation of the diverse individual gene trees.

Graphs drawn from different sources relating gene conflicts in lineage estimation, (top), versus rate of morphological change from the fossil record, (bottom), in birds, and over time on the X axis. There are dramatic upticks in all metrics going back towards the end-Cretaceous extinction event.


Similarly, hybridization means that proto-species are still occasionally interbreeding with their ancestors or other relatives, (think of Neanderthals), thereby mixing up the gene trees relative to the overall speciation tree. This can even happen by gene transfer mediated by viruses. "Rapid evolution" is not defined by these authors, and comes dangerously close to using the conclusion (of high morphological change during periods of "gene-tree conflict") to describe their premise. But generally, this would mean that some genes are evolving rapidly, due to novel selective pressures, thus deviating from the general march of neutral evolution that affects most loci more evenly. This rate change can mess up phylogenetic inferences, lengthening some (gene) tree branches versus others, and making a unitary tree (that is, for the species or lineage as a whole) hard to draw.

But these are all rather abstract ideas. How does this process look on the ground? A wonderful paper on the tomato gives us some insight. This group traced the evolutionary history of a genus of tomato (Solanum sect. Lycopersicon) in the South American Andes (plus Galapagos islands just off-shore, interestingly enough). These form a tight group of about thirteen species that evolved from a single ancestor over the last two million years, before jumping onto our lunch plates via intensive breeding by native South Americans. This has been a rapid process of evolution, and phylogenies have been difficult to draw, for all the reasons given above. The tomatoes are mostly reproductively isolated, but not fully, and have various specializations for their microhabitats. So are they real species? And how can they evolve and specialize if they do not fully isolate from each other?

Gene-based phylogenetic tree of Andean tomato species. The consensus tree is in black at the right, while alternate trees (cloud) are drawn from 2,745 windows of 100 kb across the tomato genomes, clearly giving diverse views of the lineage tree. Lycopersicon are the species under study, while Lycopericoides is an "outgroup" genus used as a control / comparison. 

In the graph above, there is, as they say, rampant discord among genomic segments, versus the overall consensus tree that they arrived at:

"However, these summary support measures conceal rampant phylogenetic complexity that is evident when examining the evolutionary history of more defined genomic partitions."

For one thing, much of the sequence diversity in the ancestor survives in the descendent lineages. The founders were not single plants, by any means. Second, there has been a lot of "introgression", which is to say, breeding / hybridization between lineages after their putative separation. 

Lastly, they find a high rate of novel mutations, often subject to clear positive selection. Ten enyzmes in the carotenoid biosynthesis pathway, which affects fruit color in a group that has evolved red fruits, carry novel mutations. A UV light damage repair gene shows strong signs of positive selection, in high-altitude species. Others show novel mutations in a temperature stress response gene, and selection on genes defending plants against heavy metals in the soil. 

Their conclusion (as that of the previous paper) is that adaptive radiations are characterized by several components that scramble normal phylogenetic analysis, including variably preserved diversity from the originating species, post-divergence gene flow (i.e. mating), and rapid adaptation to new conditions along with strong environmental selection over the pre-existing diversity. All of these mechanisms are happening at the same time, and each position in the genome is being affected at the same time, so this is a massively parallel process that, while slow in human time, can be very rapid in geologic time. They note how tomato speciation compares with some other well-known cases:

"Nonetheless, based on our crude estimates within each analysis, we infer that relatively small yet substantial fractions of the euchromatic genome are implicated in each source of genetic variation. We find little evidence that one of these processes predominates in its contribution, although our estimates suggest that de novo mutation might be relatively more influential and cross-species introgression relatively less so. This latter observation is in interesting contrast with several recent studies of animal adaptive radiations, including in Darwin’s Finches [18], Equids [14], and fish [13], where evidence suggests that hybridization and introgression might be much more pervasive and influential than previously suspected, and more abundant than we detect in Solanum."

Naturally, neither of these studies go back in time to nail down exactly what happened during these evolutionary radiations, nor what caused them. They only give hints about causation. Why the stasis of some species, and the rapid niche-finding and filling by others? Was the motive force natural selection, or god? The latter paper gives some clear hints about possible selective pressures and rationales that were at work in the Andes and Galapagos on the genus of Solanum. But it is always frustratingly a matter of abstract reasoning, in the manner of Darwin, that paints the forces at work, however detailed the genetic and biogeographic analyses and however convincing the analogous laboratory experiments on model, usually microbial, organisms. We have to think carefully, and within the discipline of known forces and mechanisms, to arrive at intellectually honest answers to these questions, insofar as they can be answered at all.


Saturday, August 24, 2024

Aging and Death

Our fate was sealed a very long time ago.

Why do we die? It seems like a cruel and wasteful way to run a biosphere, not to mention a human life. After we have accumulated a lifetime of experience and knowledge, we age, decline, and sign off, whether to go to our just reward, or into oblivion. What is the biological rationale and defense for all this, which the biblical writers assigned to the fairy tale of the snake and the apple?

A recent paper ("A unified framework for evolutionary genetic and physiological theories of aging") discusses evolutionary theories of aging, but in typical French fashion, is both turgid and uninteresting. Aging is widely recognized as the consequence of natural selection, or more precisely, the lack thereof after organisms have finished reproducing. Thus we are at our prime in early adulthood, when we seek mates and raise young. Evolutionarily, it is all downhill from there. In professional sports, athletes are generally over the hill at 30, retiring around 35. Natural selection is increasingly irrelevant after we have done the essential tasks of life- surviving to mate and reproduce. We may participate in our communities, and do useful things, but from an evolutionary perspective, genetic problems at this phase of life have much less impact on reproductive success than those that hit earlier. 

All this is embodied in the "disposable soma" theory of aging, which is that our germ cells are the protected jewels of reproduction, while the rest of our bodies are, well, disposable, and thus experience all the indignities of age once their job of passing on the germ cells is done. The current authors try to push another "developmental" theory of aging, which posits that the tradeoffs between youth and age are not so much the resources or selective constraints focused on germ cell propagation vs the soma, but that developmental pathways are, by selection, optimized for the reproductive phase of life, and thus may be out of tune for later phases. Some pathways are over-functional, some under-functional for the aged body, and that imbalance is sadly uncorrected by evolution. Maybe I am not doing justice to these ideas, which maybe feed into therapeutic options against aging, but I find this distinction uncompelling, and won't discuss it further.

A series of unimpressive distinctions in the academic field studying aging from an evolutionary perspective.

Where did the soma arise? Single cell organisms are naturally unitary- the same cell that survives also mates and is the germ cell for the next generation. There are signs of aging in single cell organisms as well, however. In yeast, "mother" cells have a limited lifespan and ability to put out daughter buds. Even bacteria have "new" and "old" poles, the latter of which accumulate inclusion bodies of proteinaceous junk, which apparently doom the older cell to senescence and death. So all cells are faced with processes that fail over time, and the only sure bet is to start as a "fresh" cell, in some sense. Plants have taken a distinct path from animals, by having bodies and death, yes, but being able to generate germ cells from mature tissues instead of segregating them very early in development into stable and distinct gonads.

Multicellularity began innocently enough. Take slime molds, for example. They live as independent amoebae most of the time, but come together to put out spores, when they have used up the local food. They form a small slug-like body, which then grows a spore-bearing head. Some cells form the spores and get to reproduce, but most don't, being part of the body. The same thing happens with mushrooms, which leave a decaying mushroom body behind after releasing their spores. 

We don't shed alot of tears for the mushrooms of the world, which represent the death-throes of their once-youthful mycelia. But that was the pattern set at the beginning- that bodies are cells differentiated from the germ cells, that provide some useful, competitive function, at the cost of being terminal, and not reproducing. Bodies are forms of both lost energy and material, and lost reproductive potential from all those extra cells. Who could have imagined that they would become so ornate as to totally overwhelm, in mass and complexity, the germ cells that are the point of the whole exercise? Who could have imagined that they would gain feelings, purposes, and memories, and rage against the fate that evolution had in store for them?

On a more mechanistic level, aging appears to arise from many defects. One is the accumulation of mutations, which in soma cells lead to defective proteins being made and defective regulation of cell processes. An extreme form is cancer, as is progeria. Bad proteins and other junk like odd chemicals and chemically modified cell components can accumulate, which is another cause of aging. Cataracts are one example, where the proteins in our lenses wear out from UV exposure. We have quite intricate trash disposal processes, but they can't keep with everything, as we have learned from the advent of modern chemistry and its many toxins. Another cause is more programmatic: senescent cells, which are aged-out and have the virtue that they are blocked from dividing, but have the defect that they put out harmful signals to the immune system that promote inflammation, another general cause of aging.

Aging research has not found a single magic bullet, which makes sense from the evolutionary theory behind it. A few things may be fixable, but mostly the breakdowns were never meant to be remedied or fixed, nor can they be. In fact, our germ cells are not completely immune from aging either, as we learn from older fathers whose children have higher rates of autism. We as somatic bodies are as disposable as any form of packaging, getting those germ cells through a complicated, competitive world, and on to their destination.


Saturday, August 17, 2024

Oh, to Be Normal

It is a greater accomplishment than commonly appreciated.

The popular media make a fetish of condemning normality. Chase your dream, dare to be different, don't settle for average. Well, that is laudable, and appropriate for the occasional genius, but militates against much larger forces toward uniformity. Just look at styles in clothing, cars, architecture. "Keeping up" with fashions and the times is a marker of, not just normality, but of being alive and part of the larger social community. Achieving normal means not being fossilized in wig and breeches, or bell bottoms. The period of middle school and high school is when these pressures are most acute, as children find places in the wider society, staking their claim with clothing and all the other markers of being "normal". Especially against parents, who have by this time fallen a little back in their ability or desire to keep up with current standards.

But the point I am more interested in is genetic. In genetic terms, normal is typically stated as "wild-type", which is the opposite of mutant. Any particular gene or trait can be construed as normal or defective, with the possibility of being improved in some way over the "wild-type" being exceptionally rare. But summed over an entire genome, one can appreciate that not every gene can be normal. We all have mutations, and thus deviate from normal. In this sense, normality is an impossible, unattainable standard, and as anyone can observe, we all labor under some kind of deficiency. The only question is how severe those deficiencies are, relative to others, and relative to the minimum level of competence we need to survive.


That is where these two threads come together. Young people are continually competing and testing each other for fitness, gauging each other's ability to keep up with the high standard that constitutes "normal" for a culture. It is the beauty queens, and the popular kids, who find themselves at the top of the heap, shining standards of normality in a sea of mediocrity and deficiency. At least until they find out that they might have other, less visible weaknesses, like, perhaps, alcoholism. 

So, not to be all conformist about it, but for all the praise showered on diversity and innovation, there is a lot to be said for standards of normality, which are rather higher than they seem. They actually set significant challenges for everyone to aspire to. They represent, for example, a wide gamut of competencies that undergird society- the ability of people to get along in professional and intimate settings, and the basic knowledge and judgement needed for a democratic political system. Making up for one's deficiencies turns out to be a life-long quest, just as significant as making use of extraordinary gifts or pursuing competitive excellence in some chosen field.


Saturday, July 27, 2024

Putting Body Parts in Their Places

How HOX genes run development, on butterfly wings.

I have written about the HOX complex of genes several times, because they constitute a grail of developmental genetics- genes that specify the identity of body parts. They occupy the middle of a body plan cascade of gene regulation, downstream from broader specifiers for anterior/posterior orientation, regional and segment specification, and in turn upstream of many more genes that specify the details of organ and tissue construction. Each of the HOX genes encodes a transcriptional regulator, and the name of one says it all- antennapedia. In fruit flies, where all this was first discovered, loss of antennapedia converts some legs into antennae, and extra expression of antennapedia converts antennae on the head into legs.

The HOX complex (named for the homeobox DNA binding motif of the proteins they encode) is linear, arranged from head-affecting genes (labial, proboscipedia) to abdomen-affecting genes (abdominal A, abdominal B; evidently the geneticist's flair for naming ran out by this point). This arrangement is almost universally conserved, and turns out to reflect molecular mechanisms operating on the complex. That is, it "opens" in a progressive manner during development, on the chromosome. Repression of chromatin is a very common and sturdy way to turn genes off, and tends to affect nearby genes, in a spreading effect. So it turns out to be easy, in some sense, to set up the HOX complex to have this chromatin repression lifted in a segmental fashion, by upstream regulators, whereby only the head sections are allowed to be expressed in head tissues, but all the genes are allowed to be expressed in the final abdominal segment. That is why the unexpected expression of antennapedia, which is the fifth of eight HOX genes, in the head, leads to a thoracic tissue (legs) forming on the head.

A recent paper delved a little more deeply into this story, using butterflies, which have a normal linearly conserved HOX cluster and are easy to diagnose for certain body part transformations (called homeotic) on their beautiful wings. The main thing these researchers were interested in is the genetic elements that separate one part of the HOX cluster from other parts. These are boundary or "insulator" elements that separate topologically associated domains (called TADs). Each HOX gene is surrounded by various regulatory enhancer and inhibitor sites in the DNA that are bound by regulatory proteins. And it is imperative that these sites be directed only to the intended gene, not neighboring genes. That is why such TADs exist, to isolate the regulation of genes from others nearby. There are now a variety of methods to map such TADs, by looking where chromatin (histones) are open or closed, or where DNA can be cut by enzymes in the native chromatin, or where crosslinks can be formed between DNA molecules, and others.

The question posed here was whether a boundary element, if deleted, would cause a homeotic transformation in the butterflies they were studying. They found, unfortunately, that it was impossible to generate whole animals with the deletions and other mutations they were engineering, so they settled for injecting the CRISPER mutational molecules into larval tissues and watching how they affected the adults in mosaic form, with some mutant tissues, some wild-type. The boundary they focused on was between antennapedia (Antp) and ultrabithorax (Ubx), and the tissues the forewings, where Ubx is normally off, and hindwings, where Ubx is normally on. Using methods to look at the open state of chromatin, they found that the Ubx gene is dramatically opened in hindwings, relative to forewings. Nevertheless, the boundary remains in place throughout, showing that there is a pretty strong isolation from Antp to Ubx, though they are next door and a couple hundred thousand basepairs apart. Which in genomic terms is not terribly far, while it leaves plenty of space for enhancers, promotes, introns, boundary elements, and other regulatory paraphernalia.

Analysis of the site-to-site chromosomal closeness and accessibility across the HOX locus of the butterfly Junonia coenia. The genetic loci are noted at the bottom, and the site-to-site hit rates are noted in the top panels, with blue for low rates of contact, and orange/red for high rates of contact. At top is the forewing, and at bottom is the hindwing, where Ubx is expressed, thus the high open-ness and intra-site contact within its topological domain (TAD). Yet the boundary between Ubx and Anp to its left (dotted lines at bottom) remains very strong in both tissues. In green is a measure of transcription from this DNA, in differential terms hindwing minus forewing, showing the strong repression of Ubx in the forewing, top panel.

The researchers naturally wanted to mutate the boundary element, (Antp-Ubx_BE), which they deduced lay at a set of binding sites (featuring CCCTC) for the protein CTCF, a well-known insulating boundary regulator. Note, interestingly, that in the image above, the last exon (blue) of Ubx (transcription goes right to left) lies across the boundary element, and in the topological domain of the Antp gene. This means that while all the regulatory apparatus of Ubx is located in its own domain, on the right side, it is OK for transcription to leak across- that has no regulatory implications. 

Effects of removing the boundary element between Ubx and Antp. Detailed description is in the text below. 

Removal of this boundary element, using CRISPER technology in portions of the larval tissues, had the expected partial effects on the larval, and later adult, wings of this butterfly. First, note that in panel D insets, the wild type larval forewing shows no expression of Ubx, (green), while the wild type hind wing shows wide-spread expression. This is the core role of the HOX locus and the Ubx gene- locate its expression in the correct body parts to then induce the correct tissues to develop. The larval wing tissue of the mosaic mutant, also in D, shows, in the forewing, extensive patchy expression of Ubx. This is then reflected in the adult (different animals) in the upper panels, in the mangled eyespot of the fully formed wing (center panel, compared to wild-type forewing and hindwing to each side). It is a small effect, but then these are small mutations, done in only a fraction of the larval cells, as well.

So here we are, getting into the nuts and bolts of how body parts are positioned and encoded. There are large regions around these genes devoted to regulatory affairs, including the management of chromatin repression, the insulation of one region from another, the enhancer and repressor sites that integrate myriad upstream signals (i.e. other DNA binding proteins) to come up with the detailed pattern of expression of these HOX genes. Which in turn control hundreds of other genes to execute the genetic program. This program can hardly be thought of as a blueprint, nor a "design" in anyone's eye, divine or otherwise. It resembles much more a vast pile of computer code that has accreted over time with occasional additions of subroutines, hacks, duplicated bits, and accidental losses, adding up to a method for making a body that is robust in some respects to the slings and arrows of fortune, but naturally not to mutations in its own code.


Saturday, July 13, 2024

The Long Tail of Genome Duplication

A new genomic sequence of hagfish tells us a little about our origins.

Hagfish- not a fish, and not very pretty, but it occupies a special place in evolution, as a vertebrate that diverged very early (along with lampreys, forming the cyclostome branch) from the rest of the jawed vertebrates (the gnathostome branch). The lamprey has been central to studies of the blood clotting system, which is a classic story of gradual elaboration over time, with more steps added to the cascade, enabling faster clotting and finer regulation.

A highly schematic portrayal (not to scale!) of the evolutionary history of animal life on earth.

A recent paper reported a full genome sequence of hagfish, and came up with some interesting observations about the history of vertebrate genomes. At about three billion nucleotides, this genome is about as large as ours. (Yet again, size doesn't see, to matter much, when it comes to genomes.) They confirm that lampreys and hagfish make up a single lineage, separate from all other animals and especially from the jawed vertebrates. For example, though lampreys have 84 chromosomes to the hagfish's 17, this resulted from repeated splitting of chromosomes, and each lamprey chromosome can be mostly mapped to one hagfish chromosome, accepting that a lot of other gene movement and change has taken place in the roughly 460 million years since these lineages diverged. 

Hagfish (bottom) and lamprey (top) chromosomes pretty much line up, indicating that despite the splitting of the lamprey genome, there hasn't been a great deal of shuffling over the intervening 460 million years.

The most important parts of this paper are on the history of genome duplications that happened during this early phase of vertebrate evolution. Whole genome duplications are an extremely powerful engine of change, supplying the organism with huge amounts of new genetic material. Over time, most of the duplicated genes are discarded again (in a process they call re-diploidization). But many are not, if they have gained some foothold in providing more of an important product, or differentiated themselves from each other in some other way. Our genomes are full of families, some extremely large, of related genes that have finely differentiated functions. Many of these copies originated in long-ago genome duplications, while others originated in smaller duplication accidents. It is startling to hear from self-labeled scientists in the so-called intelligent design movement that there is some rule or law against such copying of information, by their ridiculous theories of specified information. Hagfish certainly never heard of such a thing.

At any rate, these researchers confirm that the earliest vertebrate lineage, around 530 million years ago, experienced two genome duplications which led to a large increment of new genes and evolutionary innovation. What they find now is that the cyclostome lineage experienced another genome three-fold duplication (near its origin, about 460 million years ago, leading to another round of copies and innovation. And lastly, the gnathostome lineage separately experienced its own genome four-fold duplication around the same time, after it had diverged from the cyclostome lineage. One might say that the gnathostomes made better use of their genomic manna, generating jaws, teeth, ears, thymus, better immune systems, and the other features that led them to win the race of the animal kingdom. But hagfish are still around, showing that primitive forms can find a place in the scheme of things, as the biosphere gets larger and more diverse over time.

A classic example of gene replication is the Hox cluster, which are a set of genes that have the power of dictating what body part occurs where. They are gene regulators that function in the middle of the developmental sequence, after determination of the overall body axis and segmentation, and themselves regulating downstream genes governing features as they occur in different segments, such as limbs, parts of the head, fingers, etc. Flies have one Hox cluster, split into two parts. The extremely primitive chordate amphioxus, which far predates the cyclostomes, also has one complete Hox cluster, as diagrammed below. Most other vertebrates, including us, have four Hox clusters, amounting to over thirty of these transcription regulators. These four clusters arose from the inferred genome duplications very early in the vertebrate lineage, prior to the advent of the cyclostomes. 

Hox clusters and their origins, as inferred by the current authors. The red/blue points at the left mark whole genome duplications (or more) that have been inferred by these or other authors. More description is in the main text below.

The inferred genome duplications during early chordate evolution, noted on the far left of the diagram above, led to duplicated clusters of Hox genes. Amphioxus (top) is the earliest branching chordate, and has only one full Hox cluster of transcription regulators, which, in general terms, control, during development, the expression of body parts along the body axis, with the order of genes in the cluster paralleling expression and action along the body axis. Chicken as a gnathostome has four copies of the cluster, with a few of the component genes lost over time. Hagfish have six copies of this Hox cluster, some rather skeletal, stemming from its genome duplication events. Clearly several whole clusters have also been lost, as in some cases the genome duplications experienced by the cyclostomes resolved back to diploidy without leaving an extra copy of this cluster. The net effect is to allow all these organisms greater options for controlling the identity and form of different parts of the body, particularly, in the case of gnathostomes, the head.

Genome duplications are one of those fast events in evolution that are highly influential, unlike the usual slow and steady selection and optimization that is the rule in the Darwinian theory. Unlike mass extinction, another kind of fast event in evolution, genome duplications are highly constructive, providing fodder on a mass (if microscopic) scale for new functions and specializations that help account for some of the more rapid events in the history of life, such as the rise of chordates and then vertebrates in the wake of the Cambrian explosion.


Sunday, March 31, 2024

Nominee for Most Amazing Protein: RAD51

On the repair and resurrection of DNA, which gets a lot of help from a family of proteins including RAD51, DMC1, and RecA.

Proteins do all sorts of amazing things, from composing pores that can select a single kind of ion- even just a proton- to allow across a membrane, to massive polymerizing enzymes that synthesize other proteins, DNA, and RNA. There is really no end to it. But one of the most amazing, even incredible, things that happens in a cell is the hunt for DNA homology. Even over a genome of billions of base pairs, it is possible for one DNA segment to find the single other DNA segment that matches it. This hunt is executed for several reasons. One is to line up the homologous chromosomes at meiosis, and carry out the genetic cross-overs between them (when they are lined up precisely) that help scramble our genetic lineages for optimal mix-and-matching during reproduction. Another is for DNA repair, which is best done with a good copy for reference, especially when a full double-strand break has happened. Just this week, a fascinating article showed that memories in our brains depend in some weird way on DNA breaks occurring in neurons, some of which then use the homologous repair process, including homology search, to patch things up.

The protein that facilitates this DNA homology search is deeply conserved in evolution. It is called RecA in bacteria, radA and radB in archaea, and the RAD51 family in eukaryotes. Naturally, the eukaryotic family is most closely related to the archaeal versions (RAD51 and DMC1 evolving from radA, and a series of other, and poorly understood family members, from radB). In this post, I will mostly just call them all RAD51, unless I am referring to DMC1 specifically. The name comes from genetic screens for radiation-sensitive mutants in human and other eukaryotes, since RAD51 plays a crucial role in DNA repair, as noted above. RAD51 is not a huge protein, but it is an ATPase. It binds to itself, forming linear filaments with ATP at the junction points between units. It binds to a single strand of DNA, which is going to be what does the hunting. And it binds, in a complicated way, to another double-stranded DNA, which it helps to open briefly to allow its quality as a target to be evaluated. 

This diagram describes the repair of double strand breaks (DSB) in DNA. First the ends are covered with a bunch of proteins that signal far and wide that something terrible has happened- the cell cycle has to stop.. fire engines need to be called. One of these proteins is RPA, which simply binds all over single-stranded DNA and protects it. Then the RAD51 protein comes in, displaces RPA, and begins the homology search process. The second DNA shown, in dark black, doesn't just happen, but is hunted for high and low throughout the nucleus to find the exact homolog of the broken end. When that exact match is found, the repair process can proceed, with continued DNA synthesis through the lesion, and resolution of the newly repaired double strands, either to copy up the homolog version, or exchange versions (GC, for gene conversion). 

This diagram shows how the notorious (when mutated) oncogene BRCA2 (in green) works. It binds RAD51 (in blue) and brings it, chain-gang style, to the breakpoints of DNA damage to speed up and specify repair.


There have been several structural studies by this point that clarify how RAD51 does its thing. ATP is simply required to form filaments on single-stranded DNA. When a match has been found and RAD51 is no longer needed, ATP is cleaved, and RAD51 falls off, back to reserve status. The magic starts with how RAD51 binds the single stranded DNA. One RAD51 binds for every ~3 bases in the DNA, and the it binds the phosphate backbone, so that the bases are nicely exposed in front, and all stretched out, ready to hunt for matching DNA.

A series of RAD51 molecules (in this case, RecA from bacteria) bound sequentially to single-stranded DNA (red). Note the ATP homolog chemicals in yellow, positioned between each protein unit. One can see that the DNA is stretched out a bit and the bases point outwards.

A closeup view of one of the RAD51 units from above, showing how the bases of the DNA (yellow) are splayed out into the medium, ready to find their partners. They are arranged in orientations similar to how they sit in normal (B-form) DNA, further enhancing their ability to find partners.

The second, and more mysterious part of the operation is how RAD51 scans double-stranded DNA throughout the genome. It has binding sites for double-stranded DNA, away from the single-stranded DNA, and then it also has a little finger that splits open the double-stranded DNA, encouraging separation and allowing one strand to face up to the single stranded DNA that is held firmly by the RAD51 polymer. The transient search happens in eight-base increments, with tighter capture of the double-strand DNA happening when nine bases are matched, and committment to recombination or repair happening when a match of fifteen bases is found.  

These structures show an intermediate where a double-stranded DNA (ends in teal and lavender, and separated DNA segments in green and red) has been captured, making a twelve base match with the stable single-stranded DNA (brown). Note how the double-stranded DNA ends are held by outside portions of the RAD51 protein. Closeup on the right shows the dangling, non-paired DNA strand in red, and the newly matched duplex DNA with green-brown colored base interactions.

These structures can only give a hint of what is going on, since the whole process relies so clearly on the brownian motion that allows super-rapid diffusion of the stablized single-strand DNA+RAD51 over the genome, which it scans efficiently in one-dimensional fashion, despite all the chromatin and other proteins parked all over the place. And while the structures provide insight into how the process happens, it remains incredible that this search can happen, on what is clearly a quite reliable basis, day and day out, as our genomes get hit by whatever the environment throws at us.

"Unfortunately, most RAD51 and RAD51 paralog point mutations that have been clinically identified are classified as variants of unknown significance (VUSs). Future studies to reclassify these RAD51 gene family VUSs as pathogenic or benign are desperately needed, as many of these genes are now included on hereditary breast and ovarian cancer screening panels. Reclassification of HR-deficient VUSs would enable these patients to benefit from therapies that specifically target HR deficiency, as do poly(ADP)-ribose polymerase (PARP) inhibitors in BRCA1/2-deficient cells."

Lastly, one paper made the point that clinicians need better understanding of the various mutations that can affect RAD51 itself. Genetic testing now is able to find all of our mutations, but we don't always know what each mutation is capable of doing. Thus deeper studies of RAD51 will have beneficial effects on clinical diagnosis, when particular mutations can be assigned as disease-causing, thus justifying specific therapies that would otherwise not be attempted.


Saturday, December 23, 2023

How Does Speciation Happen?

Niles Eldredge and the theory of punctuated equilibrium in evolution.

I have been enjoying "Eternal Ephemera", which is an end-of-career memoir/intellectual history from a leading theorist in paleontology and evolution, Niles Eldredge. In this genre, often of epic proportions and scope, the author takes stock of the historical setting of his or her work and tries to put it into the larger context of general intellectual progress, (yes, as pontifically as possible!), with maybe some gestures towards future developments. I wish more researchers would write such personal and deeply researched accounts, of which this one is a classic. It is a book that deserves to be in print and more widely read.

Eldredge's claim to fame is punctuated equilibrium, the theory (or, perhaps better, observation) that evolution occurs much more haltingly than in the majestic gradual progression that Darwin presented in "Origin of Species". This is an observation that comes straight out of the fossil record. And perhaps the major point of the book is that the earliest biologists, even before Darwin, but also including Darwin, knew about this aspect of the fossil record, and were thus led to concepts like catastrophism and "etagen". Only Lamarck had a steadfastly gradualist view of biological change, which Darwin eventually took up, while replacing Lamarck's mechanism of intentional/habitual change with that of natural selection. Eldridge unearths tantalizing and, to him, supremely frustrating, evidence that Darwin was fully aware of the static nature of most fossil series, and even recognized the probable mechanism behind it (speciation in remote, peripheral areas), only to discard it for what must have seemed a clearer, more sweeping theory. But along the way, the actual mechanism of speciation got somewhat lost on the shuffle.

Punctuated equilibrium observes that most species recognized in the fossil record do not gradually turn into their descendents, but are replaced by them. Eldredge's subject of choice is trilobites, which have a long and storied record for almost 300 million years, featuring replacement after replacement, with species averaging a few million years duration each. It is a simple fact, but one that is a bit hard to square with the traditional / Darwinian and even molecular account of evolution. DNA is supposed to act like a "clock", with constant mutational change through time. And natural selection likewise acts everywhere and always... so why the stasis exhibited by species, and why the apparently rapid evolution in between replacements? That is the conundrum of punctuated equilibrium.

There have been lot of trilobites. This comes from a paper about their origin during the Cambrian explosion, arguing that only about 20 million years was enough for their initial speciation (bottom of image).

The equilibrium part, also termed stasis, is seen in the current / recent world as well as in the fossil record. We see species such as horses, bison, and lions that are identical to those drawn in cave paintings. We see fossils of animals like wildebeest that are identical to those living, going back millions of years. And we see unusual species in recent fossils, like saber-toothed cats, that have gone extinct. We do not typically see animals that have transformed over recent geological history from one (morphological) species into another, or really, into anything very different at all. A million years ago, wildebeest seem to have split off a related species, the black wildebeest, and that is about it.

But this stasis is only apparent. Beneath the surface, mutations are constantly happening and piling up in the genome, and selection is relentlessly working to ... do something. But what? This is where the equilibrium part comes in, positing that wide-spread, successful species are so hemmed in by the diversity of ecologies they participate in that they occupy a very narrow adaptive peak, which selection works to keep the species on, resulting in apparent stasis. It is a very dynamic equilibrium. The constant gene flow among all parts of the population that keeps the species marching forward as one gene pool, despite the ecological variability, makes it impossible to adapt to new conditions that do not affect the whole range. Thus, paradoxically, the more successful the species, and the more prominent it is in the fossil record, the less change will be apparent in those fossils over time.

The punctuated part is that these static species in the fossil record eventually disappear and are replaced by other species that are typically similar, but not the same, and do not segue from the original in a gradual way that is visible in the fossil record. No, most species and locations show sudden replacement. How can this be so if evolution by natural selection is true? As above, wide-spread species are limited in what selection can do. Isolated populations, however, are more free to adapt to local conditions. And if one of those local conditions (such as arctic cold) happens to be what later happens to the whole range (such as an ice age), then it is more likely that a peripherally (pre-)adapted population will take over the whole range, than that the resident species adapts with sufficient speed to the new conditions. Range expansion, for the peripheral species, is easier and faster than adaptation, for the wide-ranging originating species.

The punctuated equilibrium proposition came out in the 1970's, and naturally followed theories of speciation by geographic separation that had previously come out (also resurrected from earlier ideas) in the 1930's to 1950's, but which had not made much impression (!) on paleontologists. Paleontologists are always grappling with the difficulties of the record, which is partial, and does not preserve a lot of what we would like to know, like behavior, ecological relationships, and mutational history. But they did come to agree that species stasis is a real thing, not just, as Darwin claimed, an artifact of the incomplete fossil record. Granted- if we had fossils of all the isolated and peripheral locations, which is where speciation would be taking place by this theory, we would see the gradual change and adaptation taking place. So there are gaps in the fossil record, in a way. But as long as we look at the dominant populations, we will rarely see speciation taking place before our eyes, in the fossils.

So what does a molecular biologist have to say about all this? As Darwin insisted early in "Origin", we can learn quite a bit from domesticated animals. It turns out that wild species have a great amount of mostly hidden genetic variation. This is apparent whenever one is domesticated and bred for desired traits. We have bred dogs, for example, to an astonishingly wide variety of traits. At the same time, we have bred them out to very low genetic diversity. Many breeds are saddled with genetic defects that can not be resolved without outbreeding. So we have in essence exchanged the vast hidden genetic diversity of a wild species for great visible diversity in the domesticated species, combined with low genetic diversity.

What this suggests is that wild species have great reservoirs of possible traits that can be selected for the purposes of adaptation under selective conditions. Which suggests that speciation in range edges and isolated environments can be very fast, as the punctuated part of punctuated equilibrium posits. And again, it reinforces the idea that during equilibrium with large populations and ranges, species have plenty of genetic resources to adapt and change, but spend those resources reinforcing / fine tuning their core ecological "franchise", as it were.

In population genetics, it is well known that mutations arise and fix (that is, spread to 100% of the population on both alleles) at the same rate no matter how large the population, in theory. That is to say- bigger populations generate more mutations, but correspondingly hide them better in recessive form (if deleterious) and for neutral mutations, take much longer to allow any individual mutation to drift to either extinction or fixation. Selection against deleterious mutations is more relentless in larger populations, while relaxed selection and higher drift can allow smaller populations to explore wider ranges of adaptive space, perhaps finding globally higher (fitness) peaks than the parent species could find.

Eldredge cites some molecular work that claims that at least twenty percent of sequence change in animal lineages is due specifically to punctuational events of speciation, and not to the gradual background accumulation of mutations. What could explain this? The actual mutation rate is not at issue, (though see here), but the numbers of mutations retained, perhaps due to relaxed purifying selection in small populations, and founder effects and positive selection during the speciation process. This kind of phenomenon also helps to explain why the DNA "clock" mentioned above is not at all regular, but quite variable, making an uneven guide to dating the past.

Humans are another good example. Our species is notoriously low in genetic diversity, compared to most wild species, including chimpanzees. It is evident that our extremely low population numbers (over prehistoric time) have facilitated speciation, (that is, the fixation of variants which might be swamped in bigger populations), which has resulted in a bewildering branching pattern of different hominid forms over the last few million years. That makes fossils hard to find, and speciation hard to pinpoint. But now that we have taken over the planet with a huge population, our bones will be found everywhere, and they will be largely static for the foreseeable future, as a successful, wide-spread species (barring engineered changes). 

I think this all adds up to a reasonably coherent theory that reconciles the rest of biology with the fossil record. However, it remains frustratingly abstract, given the nature of fossils that rarely yield up the branching events whose rich results they record.


Saturday, December 9, 2023

The Way We Were: Origins of Meiosis and Sex

Sex is as foundational for eukaryotes as are mitochondria and internal membranes. Why and how did it happen?

Sexual reproduction is a rather expensive proposition. The anxiety, the dating, the weddings- ugh! But biologically as well, having to find mates is no picnic for any species. Why do we bother, when bacteria get along just fine just dividing in two? This is a deep question in biology, with a lot of issues in play. And it turns out that bacteria do have quite a bit of something-like-sex: they exchange DNA with each other in small pieces, for similar reasons we do. But the eukaryotic form of sex is uniquely powerful and has supported the rapid evolution of eukaryotes to be by far the dominant domain of life on earth.

A major enemy of DNA-encoded life is mutation. Despite the many DNA replication accuracy and repair mechanisms, some rate of mutation still occurs, and is indeed essential for evolution. But for larger genomes, the mutation rate always exceeds the replication rate, (and the purifying natural selection rate), so that damaging mutations build up and the lineage will inevitably die out without some help. This process is called Muller's ratchet, and is why all organisms appear to exchange DNA with others in their environment, either sporadically like bacteria, or systematically, like eukaryotes.

An even worse enemy of the genome is unrepaired damage like complete (double strand) breaks in the DNA. These stop replication entirely, and are fatal. These also need to be repaired, and again, having extra copies of a genome is the way to allow these to be fixed, by processes like homologous recombination and gene conversion. So having access to other genomes has two crucial roles for organisms- allowing immediate repair, and allowing some way to sweep out deleterious mutations over the longer term.

Our ancestors, the archaea, which are distinct from bacteria, typically have circular, single molecule genomes, in multiple copies per cell, with frequent gene conversions among the copies and frequent exchange with other cells. They routinely have five to twenty copies of their genome, and can easily repair any immediate damage using those other copies. They do not hide mutant copies like we do in a recessive allele, but rather by gene conversion (which means, replicating parts of a chromosome into other ones, piecemeal) make each genome identical over time so that it (and the cell) is visible to selection, despite their polyploid condition. Similarly, taking in DNA from other, similar cells uses the target cells' status as live cells (also visible to selection) to insure that the recipients are getting high quality DNA that can repair their own defects or correct minor mutations. All this ensures that their progeny are all set up with viable genomes, instead of genomes riddled with defects. But it comes at various costs as well, such as a constant race between getting lethal mutation and finding the DNA that might repair it. 

Both mitosis and meiosis were eukaryotic innovations. In both, the chromosomes all line up for orderly segregation to descendants. But meiosis engages in two divisions, and features homolog synapsis and recombination before the first division of the parental homologs.

This is evidently a precursor to the process that led, very roughly 2.5 billion years ago, to eukaryotes, but is all done in a piecemeal basis, nothing like what we do now as eukaryotes. To get to that point, the following innovations needed to happen:

  • Linearized genomes, with centromeres and telomeres, and >1 number of chromosomes.
  • Mitosis to organize normal cellular division, where multiple chromosomes are systematically lined up and distributed 1:1 to daughter cells, using extensive cytoskeletal rearrangements and regulation.
  • Mating with cell fusion, where entire genomes are combined, recombined, and then reduced back to a single complement, and packaged into progeny cells.
  • Synapsis, as part of meiosis, where all sister homologs are lined up, damaged to initiate DNA repair and crossing-over.
  • Meiosis division one, where the now-recombined parental homologs are separated.
  • Meiosis division two, which largely follows the same mechanisms as mitosis, separating the reshuffled and recombined sister chromosomes.

This is a lot of novelty on the path to eukaryogenesis, and is just a portion of the many other innovations that happened in this lineage. What drove all this, and what were some plausible steps in the process? The advent of true sex generated several powerful effects:

  1. A definitive solution to Muller's ratchet, by exposing every locus in a systematic way to partial selection and sweeping out deleterious mutations, while protecting most members of the population from those same mutations. Continual recombination of the parental genomes allows beneficial mutations to separate from deleterious ones and be differentially preserved.
  2. Mutated alleles are partially, yet systematically, hidden as recessive alleles, allowing selection when they come into homozygous status, but also allowing them to exist for limited time to buffer the mutation rate and to generate new variation. This vastly increases accessible genetic variation.
  3. Full genome-length alignment and repair by crossing over is part of the process, correcting various kinds of damage and allowing accurate recombination across arbitrarily large genomes.
  4. Crossing over during meiotic synapsis mixes up the parental chromosomes, allowing true recombination among the parental genomes, beyond just the shuffling of the full-length chromosomes. This vastly increases the power of mating to sample genetic variation across the population, and generates what we think of as "species", which represent more or less closed interbreeding pools of genetic variants that are not clones but diverse individuals.

The time point of 2.5 billion years ago is significant because this is the general time of the great oxidation event, when cyanobacteria were finally producing enough oxygen by photosynthesis to alter the geology of earth. (However our current level of atmospheric oxygen did not come about until almost two billion years later, with rise of land plants.) While this mainly prompted the logic of acquiring mitochondria, either to detoxify oxygen or use it metabolically, some believe that it is relevant to the development of meiosis as well. 

There was a window of time when oxygen was present, but the ozone layer had not yet formed, possibly generating a particularly mutagenic environment of UV irradiation and reactive oxygen species. Such higher mutagenesis may have pressured the archaea mentioned above to get their act together- to not distribute their chromosomes so sporadically to offspring, to mate fully across their chromosomes, not just pieces of them, and to recombine / repair across those entire mated chromosomes. In this proposal, synapsis, as seen in meiosis I, had its origin in a repair process that solved the problem of large genomes under mutational load by aligning them more securely than previously. 

It is notable that one of the special enzymes of meiosis is Spo11, which induces the double-strand breaks that lead to crossing-over, recombination, and the chiasmata that hold the homologs together during the first division. This DNA damage happens at quite high rates all over the genome, and is programmed, via the structures of the synaptonemal complex, to favor crossing-over between (parental) homologs vs duplicate sister chromosomes. Such intensive repair, while now aimed at ensuring recombination, may have originally had other purposes.

Alternately, others suggest that it is larger genome size that motivated this innovation. This origin event involves many gene duplication events that ramified the capabilities of the symbiotic assemblage. Such gene dupilcations would naturally lead to recombinational errors in traditional gene conversion models of bacterial / archaeal genetic exchange, so there was pressure to generate a more accurate whole-genome alignment system that confined recombination to the precise homologs of genes, rather than to any similar relative that happened to be present. This led to the synapsis that currently is part of meiosis I, but it is also part of "parameiosis" systems on some eukaryotes, which, while clearly derived, might resemble primitive steps to full-blown meiosis.

It has long been apparent that the mechanisms of meiosis division one are largely derived from (or related to) the mechanisms used for mitosis, via gene duplications and regulatory tinkering. So these processes (mitosis and the two divisions of meiosis) are highly related and may have arisen as a package deal (along with linear chromosomes) during the long and murky road from the last archaeal ancestor and the last common eukaryotic ancestor, which possessed a much larger suite of additional innovations, from mitochondria to nuclei, mitosis, meiosis, cytoskeleton, introns / mRNA splicing, peroxisomes, other organelles, etc.  

Modeling of different mitotic/meiotic features. All cells modeled have 18 copies of a polypoid genome, with a newly evolved process of mitosis. Green = addition of crossing over / recombination of parental chromosomes, but no chromosome exchange. Red = chromosome exchange, but no crossing over. Blue = both crossing over and chromosome exchange, as occurs now in eukaryotes. The Y axis is fitness / survival and the X axis is time in generations after start of modeling.

A modeling paper points to the quantitative benefits of the mitosis when combined with the meiotic suite of innovations. They suggest that in a polyploid archaean lineage, the establishment of mitosis alone would have had revolutionary effects, ensuring accurate segregation of all the chromosomes, and that this would have enabled differentiation among those polyploid chromosome copies, since they would be each be faithfully transmitted individually to offspring (assuming all, instead of one, were replicated and transmitted). Thus they could develop into different chromosomes, rather than remain copies. This would, as above, encourage meiosis-like synapsis over the whole genome to align all the (highly similar) genes properly.

"Modeling suggests that mitosis (accurate segregation of sister chromosomes) immediately removes all long-term disadvantages of polyploidy."

Additional modeling of the meiotic features of chromosome shuffling, and recombination between parental chromosomes, indicates (shown above) that these are highly beneficial to long-term fitness, which can rise instead of decaying with time, per the various benefits of true sex as described above. 

The field has definitely not settled on one story of how meiosis (and mitosis) evolved, and these ideas and hypotheses are tentative at this point. But the accumulating findings that the archaea that most closely resemble the root of the eukaryotic (nuclear) tree have many of the needed ingredients, such as active cytoskeletons, a variety of molecular antecedents of ramified eukaryotic features, and now extensive polyploidy to go with gene conversion and DNA exchange with other cells, makes the momentous gap from archaea to eukaryotes somewhat narrower.