Our fate was sealed a very long time ago.
Why do we die? It seems like a cruel and wasteful way to run a biosphere, not to mention a human life. After we have accumulated a lifetime of experience and knowledge, we age, decline, and sign off, whether to go to our just reward, or into oblivion. What is the biological rationale and defense for all this, which the biblical writers assigned to the fairy tale of the snake and the apple?
A recent paper ("A unified framework for evolutionary genetic and physiological theories of aging") discusses evolutionary theories of aging, but in typical French fashion, is both turgid and uninteresting. Aging is widely recognized as the consequence of natural selection, or more precisely, the lack thereof after organisms have finished reproducing. Thus we are at our prime in early adulthood, when we seek mates and raise young. Evolutionarily, it is all downhill from there. In professional sports, athletes are generally over the hill at 30, retiring around 35. Natural selection is increasingly irrelevant after we have done the essential tasks of life- surviving to mate and reproduce. We may participate in our communities, and do useful things, but from an evolutionary perspective, genetic problems at this phase of life have much less impact on reproductive success than those that hit earlier.
All this is embodied in the "disposable soma" theory of aging, which is that our germ cells are the protected jewels of reproduction, while the rest of our bodies are, well, disposable, and thus experience all the indignities of age once their job of passing on the germ cells is done. The current authors try to push another "developmental" theory of aging, which posits that the tradeoffs between youth and age are not so much the resources or selective constraints focused on germ cell propagation vs the soma, but that developmental pathways are, by selection, optimized for the reproductive phase of life, and thus may be out of tune for later phases. Some pathways are over-functional, some under-functional for the aged body, and that imbalance is sadly uncorrected by evolution. Maybe I am not doing justice to these ideas, which maybe feed into therapeutic options against aging, but I find this distinction uncompelling, and won't discuss it further.
A series of unimpressive distinctions in the academic field studying aging from an evolutionary perspective. |
Where did the soma arise? Single cell organisms are naturally unitary- the same cell that survives also mates and is the germ cell for the next generation. There are signs of aging in single cell organisms as well, however. In yeast, "mother" cells have a limited lifespan and ability to put out daughter buds. Even bacteria have "new" and "old" poles, the latter of which accumulate inclusion bodies of proteinaceous junk, which apparently doom the older cell to senescence and death. So all cells are faced with processes that fail over time, and the only sure bet is to start as a "fresh" cell, in some sense. Plants have taken a distinct path from animals, by having bodies and death, yes, but being able to generate germ cells from mature tissues instead of segregating them very early in development into stable and distinct gonads.
Multicellularity began innocently enough. Take slime molds, for example. They live as independent amoebae most of the time, but come together to put out spores, when they have used up the local food. They form a small slug-like body, which then grows a spore-bearing head. Some cells form the spores and get to reproduce, but most don't, being part of the body. The same thing happens with mushrooms, which leave a decaying mushroom body behind after releasing their spores.
We don't shed alot of tears for the mushrooms of the world, which represent the death-throes of their once-youthful mycelia. But that was the pattern set at the beginning- that bodies are cells differentiated from the germ cells, that provide some useful, competitive function, at the cost of being terminal, and not reproducing. Bodies are forms of both lost energy and material, and lost reproductive potential from all those extra cells. Who could have imagined that they would become so ornate as to totally overwhelm, in mass and complexity, the germ cells that are the point of the whole exercise? Who could have imagined that they would gain feelings, purposes, and memories, and rage against the fate that evolution had in store for them?
On a more mechanistic level, aging appears to arise from many defects. One is the accumulation of mutations, which in soma cells lead to defective proteins being made and defective regulation of cell processes. An extreme form is cancer, as is progeria. Bad proteins and other junk like odd chemicals and chemically modified cell components can accumulate, which is another cause of aging. Cataracts are one example, where the proteins in our lenses wear out from UV exposure. We have quite intricate trash disposal processes, but they can't keep with everything, as we have learned from the advent of modern chemistry and its many toxins. Another cause is more programmatic: senescent cells, which are aged-out and have the virtue that they are blocked from dividing, but have the defect that they put out harmful signals to the immune system that promote inflammation, another general cause of aging.
Aging research has not found a single magic bullet, which makes sense from the evolutionary theory behind it. A few things may be fixable, but mostly the breakdowns were never meant to be remedied or fixed, nor can they be. In fact, our germ cells are not completely immune from aging either, as we learn from older fathers whose children have higher rates of autism. We as somatic bodies are as disposable as any form of packaging, getting those germ cells through a complicated, competitive world, and on to their destination.
- Climate policy as foreign policy.
- The future of home and grid energy.
- Sometimes AI is not so impressive.
- Are Christians better than other Americans?
No comments:
Post a Comment