A brilliant case study identifying the molecular cause of certain neuro-developmental disorders shows how difficult genome-based diagnoses remain.
Molecular medicine is increasingly effective in assessing both hereditary syndromes and cancers. The sequencing approach generally comes in two flavors- whole genome sequencing, or exome sequencing, where only the most important (protein-coding) parts are sampled. In each case, the hunt is for mutations (more blandly called variants) that cause the syndrome being investigated, from among the large number of variants we all carry. This approach is becoming standard-of-care in oncology, due to tremendous influence and clinical significance of cancer-driving mutations, many of which now match directly to tailored treatments that address them (thus the "precision" in precision medicine).
But another arm of precision medicine is the hunt for causes of congenital problems. There are innumerable genetic disorders whose causal analysis can lead not only to an informative diagnosis, and sometimes to useful treatments, but also to fundamental understanding of human biology. Sufferers of these syndromes may spend a lifetime searching for a diagnosis, being shuffled from one doctor or center to another and subject to various forms of hypothetical medicine, before some deep sequencing pinpoints the cause of their disease and founds a new diagnostic category that provides, if not relief, at least understanding and a medical home.
A recent paper from Britain provided a classic of this form, investigating the causes of neurodevelopmental (NDD) disorders, which encompass a huge range of problems from mild to severe. They comment that even after the most modern analysis and intensive sequencing, 60% of NDD cases still can not be assigned causes. A large part of the problem is that, despite knowing the full sequence of the human genome, its function is less well-understood. The protein-coding genes (20,000 of those, roughly) are delineated and studied pretty closely. But that only accounts for 1 to 2% of the genome. The rest ranges from genes for a blizzard of non-coding RNAs, some of which are critical, to large regulatory regions with smatterings of important sites, to junk of various kinds- pseudogenes, relic retroviruses, repetitive elements, etc. The importance of any of these elements (and individual DNA base positions within them) varies tremendously. This means specifically that exome sequencing is not going to cut it. Exome sequencing focuses on a very small part of the genome, which is fine if your syndrome (such as a common cancer) is well characterized and known to arise from the usual suspects. But for orphan syndromes, it does not cast a wide enough net. Secondly, even with full genome sequencing, so little is known about the remoter regions of the genome that assigning a function to variations found there is difficult to impossible. It takes statistical analysis of incidence of the variation vs the incidence of the syndrome.
These authors used a trove of data- the Genomics England 100,000 genomes project, focusing on the ~9,000 genomes in this collection from people with NDD syndromes. (Plus additional genomes collected elsewhere.) (We can note in passing that Britain's nationalized health system remains at the forefront of innovative research and care.) What they found was an unusually high incidence of a particular mutation in a non-protein-coding gene called RNU4-2. The product of this gene is an RNA called U4, which is an important part of the spliceosome, where it pairs RNA-to-RNA with another RNA, U6, in a key step of selecting the first (5-prime) side of an intron that is to be spliced out of mRNA messages. This gene would never have come up in exome analysis, being non-protein-coding. Yet it is critically important, as splicing happens to the vast majority of human genes. Additionally, differential splicing- the selection of alternative exons and splice sites in a regulated way- happens frequently in developmental programs and neurological cell types. There is a class of syndromes called spliceosomopathies that are caused by defects in mRNA splicing, and tend to appear as syndromes in these processes.
As shown in the images (all based on a large corpus of other work on spliceosomes), RNU4-2/U4 pairs intimately with the U6 spliceosomal RNA, and the mutation found by the current group (which is a single nucleotide insertion) causes a bulge in this pairing, as marked. Meanwhile, the U6 RNA pairs at the same time with the exon-intron junction of the target mRNA (bottom image), at a site that is very close to the U4 pairing region (top image). The upshot is that this single base insertion into U4 causes some portion of the target mRNAs to be mis-spliced, using non-natural 5 prime splice sites and thus altering their encoded proteins. This may cause minor problems in the protein, but more often will cause a shift in translation frame, a premature stop codon, and total loss of the functional protein. So this tiny mutation can have severe effects and is indeed genetically dominant- that is, one copy overrides a second wild-type copy to generate the NDD diseases that were studied.
The U4 RNA (teal) paired with the U6 RNA (gray), within an early spliceosome complex. The mutation studied here is pointed out in black (n.64_65insT - i.e. insertion of a T). Note how it would cause a bulge in the pairing. Importantly, the location in the U6 RNA that pairs with the mRNA (see below) is right next door, at the ACAGAGA (light gray). The authors use this structural work from others to suggest how the mutation they found can alter selected splicing sites and thus lead to disease. Other single nucleotide insertions that cause similar syndromes are marked with black arrows, while single nucleotide substitutions that cause less severe syndromes are marked with orange RNA segments. |
The U6 RNA (pink) paired with its mRNA target to be spliced. It binds right at the intron (gray) exon (black) boundary, where the cut will eventually be made the remove the intron. The bump from the mis-paired mutant U4 RNA (see above) distorts this binding, sending U6 to select wrong locations for spicing. |
The researchers went on to survey this and other spliceosomal RNA genes for similar mutations, and found few to none outside the region marked in the diagram above. For example, there is a highly similar gene called RNU4-1. But this gene is expressed about 100-fold less in brain and other tissues, making RNU4-2 the principal source of U4 RNA, and much more significant as a causal factor for NDD. It appears that other locations in RNU4-2 (and other spliceosomal RNA genes) are even more important than the one mutated location found here, thus are never found, being lethal and heavily selected against, in this highly conserved gene.
They also noted that, while this RNU4-2 mutation is severe, and thus must happen spontaneously (i.e. not inherited from parents), it only occurrs on the maternal alleles, not paternal alleles in the affected children. They speculate that this may be due to effects this gene may have in male gametogenesis, killing affected sperm preferentially, but not affected oocytes. Lastly, this set of mutations (in the small region shown in the first figure above) appears to account for, in their estimation, about 0.4 % of all NDD seen in Britain. This is a remarkably high rate for such a particular mutation that is not heritable. They speculate that some mutation hotspot kind of process may be causing these events, above the general mutation rate. What this all says about so-called "intelligent design", one may be reluctant to explore too deeply. On the other hand, this still leaves plenty of room to hunt for additional variations that cause these syndromes.
In this research, we see that clinically critical variations can pop up in many places, not just among the "usual suspects", genetically and genomically speaking. While much of the human genome is junk, most of it is also expressed (as RNA) and all of it is fair game for clinically important (if tragic) effects. The NDD syndromes caused by the mutation studied here are very severe- for more so than the ADD or mild autism diagnoses that make up most of the NDD spectrum. Understanding the causal nexus between the genome and human biology and its pathologies, remains an ongoing and complicated scientific adventure.