Saturation mutagenasis shows that our estimates of the functional effect of uncharacterized mutations are not so great.
Human genomes can now be sequenced for less than $1,000. This technological revolution has enabled a large expansion of genetic testing, used for cancer tissue diagnosis and tracking, and for genetic syndrome analysis both of embryos before birth and affected people after birth. But just because a base among the 3 billion of the genome is different from the "reference" genome, that does not mean it is bad. Judging whether a variant (the modern, more neutral term for mutation) is bad takes a lot of educated guesswork.
A recent paper described a deep dive into one gene, where the authors created and characterized the functional consequence of every possible coding variant. Then they evaluated how well our current rules of thumb and prediction programs for variant analysis compare with what they found. It was a mediocre performance. The gene is CDKN2A, one of our more curious oddities. This is an important tumor suppressor gene that inhibits cell cycle progression and promotes DNA repair- it is often mutated in cancers. But it encodes not one, but two entirely different proteins, by virtue of a complex mRNA splicing pattern that uses distinct exons in some coding portions, and parts of one sequence in two different frames, to encode these two proteins, called p16 and p14.
| One gene, two proteins. CDKN2A has a splicing pattern (mRNA exons shown as boxes at top, with pink segments leading to the p14 product, and the blue segments leading the p16 product) that generates two entirely different proteins from one gene. Each product has tumor suppressing effects, though via distinct mechanisms. |
Regardless of the complex splicing and protein coding characteristics, the authors generated all possible variants in every possible coded amino acid (156 amino acids in all, as both produced proteins are relatively short). Since the primary roles of these proteins are in cell cycle and proliferation control, it was possible to assay function by their effect when expressed in cultured pancreatic cells. A deleterious effect on the protein was revealed as, paradoxically, increased growth of these cells. They found that about 600 of the 3,000 different variants in their catalog had such an effect, or 20%.
This is an expected rate of effect, on the whole. Most positions in proteins are not that important, and can be substituted by several similar amino acids. For a typical enzyme, for instance, the active site may be made up of a few amino acids in a particular orientation, and the rest of the protein is there to fold into the required shape to form that active site. Similar folding can be facilitated by numerous amino acids at most positions, as has been richly documented in evolutionary studies of closely-related proteins. These p16 and p14 proteins interact with a few partners, so they need to maintain those key interfacial surfaces to be fully functional. Additionally, the assay these researchers ran, of a few generations of growth, is far less sensitive than a long-term true evolutionary setting, which can sift out very small effects on a protein, so they were setting a relatively high bar for seeing a deleterious effect. They did a selective replication of their own study, and found a reproducibility rate of about 80%, which is not great, frankly.
"Of variants identified in patients with cancer and previously reported to be functionally deleterious in published literature and/or reported in ClinVar as pathogenic or likely pathogenic (benchmark pathogenic variants), 27 of 32 (84.4%) were functionally deleterious in our assay"
"Of 156 synonymous variants and six missense variants previously reported to be functionally neutral in published literature and/or reported in ClinVar as benign or likely benign (benchmark benign variants), all were characterized as functionally neutral in our assay "
"Of 31 VUSs previously reported to be functionally deleterious, 28 (90.3%) were functionally deleterious and 3 (9.7%) were of indeterminate function in our assay."
"Similarly, of 18 VUSs previously reported to be functionally neutral, 16 (88.9%) were functionally neutral and 2 (11.1%) were of indeterminate function in our assay"
Here we get to the key issues. Variants are generally classified as benign, pathogenic/deleterious, or "variant of unknown/uncertain significance". The latter are particularly vexing to clinical geneticists. The whole point of sequencing a patient's tumor or genomic DNA is to find causal variants that can illuminate their condition, and possibly direct treatment. Seeing lots of "VUS" in the report leaves everyone in the dark. The authors pulled in all the common prediction programs that are officially sanctioned by the ACMG- Americal College of Medical Genetics, which is the foremost guide to clinical genetics, including the functional prediction of otherwise uncharacterized sequence variants. There are seven such programs, including one driven by AI, AlphaMissense that is related to the Nobel prize-winning AlphaFold.
These programs strain to classify uncharacterized mutations as "likely pathogenic", "likely benign", or, if unable to make a conclusion, VUS/indeterminate. They rely on many kinds of data, like amino acid similarity, protein structure, evolutionary conservation, and known effects in proteins of related structure. They can be extensively validated against known mutations, and against new experimental work as it comes out, so we have a pretty good idea of how they perform. Thus they are trusted to some extent to provide clinical judgements, in the absence of better data.
| Each of seven programs (on bottom) gives estimations of variant effect over the same pool of mutations generated in this paper. This was a weird way to present simple data, but each bar contains the functional results the authors developed in their own data (numbers at the bottom, in parentheses, vertical). The bars were then colored with the rate of deleterious (black) vs benign (white) prediction from the program. The ideal case would be total black for the first bar in each set of three (deleterious) and total white in the third bar in each set (benign). The overall lineup/accuracy of all program predictions vs the author data was then overlaid by a red bar (right axis). The PrimateAI program was specially derived from comparison of homologous genes from primates only, yielding a high-quality dataset about the importance of each coded amino acid. However, it only gave estimates for 906 out of the whole set of 2964 variants. On the other hand, cruder programs like PolyPhen-2 gave less than 40% accuracy, which is quite disappointing for clinical use. |
As shown above, the algorithms gave highly variable results, from under 40% accurate to over 80%. It is pretty clear that some of the lesser programs should be phased out. Of programs that fielded all the variants, the best were AlphaMissense and VEST, which each achieved about 70% accuracy. This is still not great. The issue is that, if a whole genome sequence is run for a patient with an obscure disease or syndrome, and variants vs the reference sequence are seen in several hundred genes, then a gene like CDKN2A could easily be pulled into the list of pathogenic (and possibly causal) variants, or be left out, on very shaky evidence. That is why even small increments in accuracy are critically important in this field. Genetic testing is a classic needle-in-a-haystack problem- a quest to find the one mutation (out of millions) that is driving a patient's cancer, or a child's inherited syndrome.
Still outstanding is the issue of non-coding variants. Genes are not just affected by mutations in their protein coding regions (indeed many important genes do not code for proteins at all), but by regulatory regions nearby and far. This is a huge area of mutation effects that are not really algorithmically accessible yet. As a prediction problem, it is far more difficult than predicting effects on a coded protein. It will requiring modeling of the entire gene expression apparatus, much of which remains shrouded in mystery.
- Oh, no! Not the shopping cart!
- Jevons and Malthus will have their say, if we do not get our act together.
- It is time to scrap GDP, and the mania for growth.
- Blaming the victim.
- Everything crypto will be just perfect.
- Can I play piano with my mind?
- We are killers.
