DNA polymerase is faster than RNA polymerase. RNA polymerase also leaves detritus in its wake. What happens when they collide?
DNA is a country road- one lane, two directions. Yet in our cells it can be extremely busy, with transcription (RNA synthesis) happening all the time, and innumerable proteins hanging on as signposts, chemical modifications, and even RNA hybridized into sections, creating separated DNA structures called R-loops. When it is time for DNA replication, what happens when all these things collide? One might think that biology had worked all this out by now, but these collisions can be quite dangerous, sending the RNA polymerase careering into the other (new) DNA strand, causing the DNA polymerase to stall or miss sections, and causing DNA breaks, which activate loud cellular alarm bells and mutations.
Despite decades of work, this area of biology is still not yet very well understood, since the conditions are difficult to reproduce and study. So I can only give a few hints of what is going from current work in the field. A couple of decades ago, a classic experiment showed that in bacteria, DNA polymerases can be stopped cold by a collision with an RNA polymerase going in the opposite direction. However, this stall is alleviated by a DNA helicase enzyme, which can pry apart the DNA strands and anything attached, and the DNA replication complex sails through, after a pause of a couple of seconds. The RNA polymerase, meanwhile, is not thrown off completely, but switches its template from the complementary strand it was using previously to the newly synthesized DNA strand just made by the passing DNA polymerase. This was an amazing result, since the elongating RNA polymerase is a rather tightly attached complex. But here, it jumps ship to the new DNA strand, even though the old DNA strand remains present, and will shortly be replicated by the lagging strand DNA polymerase complex.
General schematic of encounters between replication forks and RNA polymerases (pink, RNAP). Only co-directional, not head-on, collisions are shown here. Ribosomes (yellow) in bacteria operate directly on the nascent mRNA, and can helpfully nudge the RNA polymerase along. In this scheme, DNA damage happens after the nascent RNA is used as a primer by a new DNA polymerase (bottom), which will require special repair. |
The ability of the RNA polymerase to switch template strands, along with the nascent RNA it was making, suggests very intriguing flexibility in the system. Indeed, DNA polymerases that come up from behind the RNA polymerase (using the same strand as their template) have a much easier time of it, passing with hardly a pause, and only temporarily displacing the RNA polymerase. But things are different when the RNA polymerase has just found an error and has back-tracked to fix it. Then, the DNA polymerase complex is seriously impeded. It may even use the nascent RNA hanging off the polymerase and hybridized to the local DNA as a primer to continue synthesis, after it has bumped off the RNA polymerase that made it. This leads in turn to difficulties in repair and double strand breaks in that DNA, which is the worst kind of mutation.
The presence of RNA in the mix, in the form of single strands of RNA hybridized to one of the DNA strands, (that is, R-loops), turns out to be a serious problem. These can arise either from nascent transcription, as above, or from hybridization of non-coding RNAs that are increasingly recognized as significant gene regulators. RNA forms a slightly stronger hybrid with DNA than DNA itself does, in fact. Such R-loops (displacing one DNA strand) are quite common over active genomes, and apparently present a block to replication complexes. One would think that such fork complexes would be supplied with the kinds of helicases that could easily plow through such structures, but that is not quite the case. R-loops cause replication complex stalling, and can invoke DNA damage responses, for reasons that are not entirely clear yet.
A recent paper that piqued my interest in all this studied an ATPase motor protein that occurs at stalled replication forks and helps them restart, presumably by acting as a DNA or RNA pump of some kind, and forcing the replication complex through obstructions. It is named WRNIP1, for WRN interacting protein, for it also interacts with Werner syndrome protein, another interesting protein at the replication fork. This is another ATPase that is a helicase and also a backwards 3' -> 5' exonuclease that cleans up DNA ends around DNA repair sites, helping to remove mismatched and damaged DNA so the repair can be as accurate as possible. As one can guess, mutations in this gene cause Werner Syndrome, a striking progeria syndrome of early aging and susceptibility to cancer.
While the details of R-loop toxicity and repair are still being worked out, it is fascinating that such conflicts still exist after several billion years to figure them out. It is apparent that the design of DNA, while exceedingly elegant, results in intrinsic conflicts between expression and replication that are resolved amicably most of the time. But when either process gets overly congested, or encounters unexpected roadblocks, then tempers can flare, and an enormous apparatus of DNA damage signaling and repair is called in, sirens blaring, to do what it can to cut through the mess.
- Who really believes in climate change?
- The very strong people of the GOP.
- The ancient Easter Islanders mixed with South Americans.