How myosin works as a motor against actin to generate motion.
We use our muscles a lot, but do we know how they work? No one does, fully, but quite a bit is known. At the core is a myosin motor protein, which levers against actin filaments that are ordered in almost crystalline arrays inside muscle cells. This system long predates the advent of muscles, however, since all of our cells contain actin and myosin, which jointly help cells move around, and move cargoes around within cells. Vesicles, for instance, often traffic to where they are needed on roads of actin. The human genome encodes forty different forms of myosin, specialized for all sorts of different tasks. For example, hearing (and balance) depends in tiny rod-like hair cells filled with tight bundles of actin. Several myosin genes have variants associated with severe hearing loss, because they have important developmental roles in helping these structures form. Actin/myosin is one of the ancient transportation systems of life (the other is the dynein motor and microtubules).
Myosin uses ATP to power motion, and a great deal of work has gone into figuring how this happens. A recent paper took things to a new level by slowing down the action significantly. They used a mutant form of myosin that is specifically slower in the power stroke. And they used a quick mix and spray method that cut times between adding actin to the cocked myosin, and getting it frozen in a state ready for cryo-electron microscopy, down to 10 milliseconds. The cycle of the myosin motor goes like this:
- End of power stroke, myosin bound to actin
- ATP binds to myosin, unbinds from actin
- Lever arm of myosin cocks back to a primed state, as ATP is hydolyzed to ADP + Pi
- ADP is present, and myosin binds to actin again
- Actin binding triggers both power stroke of the lever, and release of Pi and ADP
- End of power stroke, myosin bound to actin
| A schematic of the myosin/actin cycle. Actin is in pink, myosin in gray and green, with cargoes (if any, or bundle of other myosins as in muscle) linked below the green lever. |
The structure that these researchers came up with is:
| Basic structure of myosin (colors) with actin (gray), in two conformations- primed or post-power stroke. The blue domain at top (converter) is where the lever extension is attached and is the place with the motion / force is focused. But note how the rest of the myosin structure (lavender, green, yellow, red) also shifts subtly to assist the motion. |
They also provide a video of these transformations, based on molecular dynamics simulations.
Sampling times between 10 milliseconds and 120 milliseconds, they saw structures in each of the before and after configurations, but none in intermediate states. That indicates that the motor action is very fast, and the cocking/priming event puts the enzyme in an unstable configuration. The power stroke may not look like much, but the converter domain is typically hitched to a long element that binds to cargos, leading (below) to quite a bit of motion per stroke and per ATP. About 13 actin units can be traversed along the filament in a single bound, in fact. It is also noteworthy that this mechanism is very linear. The converter domain flips in the power stroke without twisting much, so that cargoes progress linearly along the actin road, without much loss of energy from side-to-side motion.
| Fuller picture of how myosin (colored) with its lever extensions (blue) walks along actin (gray) by large steps, that cross up to 13 actin subunits at a time. The inset describes the very small amount of twist that happens, small enough that myosin walks in a rather straight line and easily finds the next actin landing spot without a lot of feeling about. |
Finally, these authors delved into a few more details about the big structural transition of the power stroke. Each of these show subtle shifts in the structure that help the main transition along. In f/g the HCM loop dips down to bind actin more tightly. In h/i the black segment already bound to actin squinches down into a new loop, probably swinging myosin slightly over to the right. This segment is at the base of the green segment, so has strong transmission effects on the power stroke. In j/k the ATP binding site, now holding ADP and Pi, loses the phosphate Pi, and there are big re-arrangements of all the surrounding loops- green, lavender, and blue. These images do not really do justice to the whole motion, nor really communicate how the ATP site sends power through the green domain to the converter (top, blue) domain which flips for the power stroke. The video referenced above gives more details, though without much annotation.
| Detailed closeups of the before/after power stroke structures. Coloring is consistent with the strucutres above. |
No comments:
Post a Comment
Thank you for commenting!