Saturday, December 16, 2023

Easy Does it

The eukaryotic ribosome is significantly slower than, and more accurate than, the bacterial ribosome.

Despite the focus, in molecular biology, on interesting molecules like genes and regulators, the most striking thing facing anyone who breaks open cells is the prevalence of ribosomes. Run the cellular proteins or RNAs out on a gel, and bulk of the material is always ribosomal proteins and ribosomal RNAs, along with tRNAs. That is because ribosomes are critically important, immense in size, and quite slow. They are sort of the beating heart of the cell- not the brains, not the energy source, but the big lumpy, ancient, shape-shifting object that pumps out another essential form of life-blood- all the proteins the cell needs to keep going.

With the revolution in structural biology, we have gotten an increasingly clear view of the ribosome, and a recent paper took it up another notch with a structural analysis of how tRNA handling works and how / why it is that the eukaryotic ribosome is about ten times slower than its bacterial progenitor. One of their figures provides a beautiful (if partial) view of each kind of ribosome, showing how well-conserved this structure is, despite the roughly three billion or more years that have elapsed since their divergence into the bacterial and archaeal lineages, from which the eukaryotic ribosome comes. 

Above, the human ribosome, and below, the ribosome of E. coli, a bacterium, in partial views. The perspective is from the back, relative to conventional views, and only a small amount of the large subunit (LSU) appears at the top of each structure, with more of the small subunit (SSU) shown below. Between them is the cleft where tRNAs bind, in a dynamic sequence of incoming rRNA at the A (acceptor) site, then catalysis of peptide bond addition at the P (peptidyl transfer) site, and ejection of the last tRNA at the E (ejection) site. In concert with the conveyor belt of tRNAs going through, the nascent protein is being synthesized in the large subunit and the mRNA is going by, codon by codon, in the small subunit. Note the overall conservation of structure, despite quite a bit of difference in detail.

The ribosome is an RNA machine at its core, with a lot of accessory proteins that were added later on. And it comes in two parts, the large and small subunits. These subunits do different things, do a lot of rolling about relative to each other, and bind a conveyor belt of tRNAs between them. The tRNAs are pre-loaded with an amino acid on one end (top) and an anticodon on the other end (bottom). They also come with a helper protein (EF-Tu in bacterial, eEF1A in eukaryotes), which plays a role later on. The anticodon is a set of three nucleotides that constitute the genetic code, whereby this tRNA is always going to match one codon to a particular amino acid. 

The ribosome doesn't care what the code is or which tRNA comes in. It only cares that the tRNA matches the mRNA held by the small subunit, as transcribed from the DNA. This process is called decoding, and the researchers show some of the differences that make it slower, but also more accurate, in eukaryotes. In bacteria, ribosomes can work at up to 20 amino acids per second, while human ribosomes top out at about 2 amino acids per second. That is pretty slow, for an enzyme! Its accuracy is about one error per thousand to ten thousand codons.

See text for description of this diagram of the ribosomal process. 50 S is the large ribosomal subunit in bacteria (60S in eukaryotes). 30S is the small subunit in bacteria (40S in eukaryotes). S stands for Svedberg units, a unit of sedimentation in high-speed centrifugation, which was used to study proteins at the dawn of molecular biology.

Above is diagrammed the stepwise logic of protein synthesis. The first step is that a tRNA comes in and lands on the empty A site, and tests whether its anticodon sequence fits the codon on the mRNA being threaded through the bottom. This fitting and testing is the key quality control process, and the slower and more selective it is, the more accurate the resulting translation. The EF-Tu/eEF1A+GTP protein holds on to the tRNA at the acceptor (A) position, and only when the fit is good does that fit communicate back up from the small subunit to the large subunit and cause hydrolysis of GTP to GDP, and release of the top of the tRNA, which allows it to swing into position (accommodation) to the catalytic site of the ribosome. This is where the tRNA contributes its amino acid to the growing protein chain. That chain, previously attached to the tRNA in the P site, now is attached to the tRNA in the A site. Now another GTP-binding protein comes in, EF-G (EEF2 in eukaryotes), which bumps the tRNA from the A site to the P site, and simultaneously the mRNA one codon ahead. This also releases whatever was in the E site of the ribosome and frees up the A site to accept another new tRNA.

See text for description. IC = initiation complex, CR = codon recognition complex, GA = GTPase activation complex, AC = accommodated complex. FRET = fluorescence resonance energy transfer. Head and shoulder refer to structural features of the small ribosomal subunit.

These researchers did both detailed structural studies of ribosomes stuck in various positions, and also mounted fluorescent labels at key sites in the P and A sites. These double labels allowed one to be flashed with light, (at its absorbance peak), and the energy to be transferred between them, resulting in fluorescence of light back out from the second fluorophore. The emitted energy from the second fluorophore provides an exquisitely sensitive measure of the distance between the two fluorophores, since its ability to capture light from the first fluorophore is sensitive to distance (cubed). The graph above (right) provides a trace of the fluorescence seen in one ribosomal cycle, as the distance between the two tRNAs changes slightly as the reaction proceeds and the two tRNAs come closer together. This technical method allows real-time analysis of the reaction as it is going along, especially one as slow as this one.

Structures of the ribosome accentuating the tRNA positions in the A, P, and E sites. Note how the green tRNA in the A site starts bent over towards the eEF1A GTPase (blue), as the decoding and quality control are going on, after which it is released and swings over next to the P site tRNA, ready for peptide bond formation. Note also how the structure of the anticodon-codon pairing (pink, bottom) evolves from loose and disordered to tight after the tRNA straightens up.

Above is shown a gross level view in stop-motion of ribosomal progress, achieved with various inhibitors and altered substrates. The mRNA is in pink (insets), and shows how the codon-anticodon match evolves from loose to tight. Note how at first only two bases of the mRNA are well-paired, while all three are paired later on. This reflects in a dim way the genetic code, which has redundancies in the third position for many amino acids, and is thought to have first had only two letters, before transitioning to three letters.

Higher detail on the structures of the tRNAs in the P site and the A site as they progress through the proof-reading phase of protein synthesis. The fluorescence probes are pictured, (Red and green dots), as is more the mRNA strand (pink).

These researchers have a great deal to say about the details of these structures- what differentiates the human from the E. coli ribosome, why the human one is slower and allows more time and more hindrance during the proof-reading step, thereby helping badly matched tRNAs to escape and increasing overall fidelity. For example, how does the GTPase eEF1A, docked to the large subunit, know when a match down at the codon-anticodon pair has been successful down in the small ribosomal subunit?

"Base pairing between the mRNA codon and the aa-tRNA anticodon stem loop (ASL) is verified through a network of ribosomal RNA (rRNA) and protein interactions within the SSU A site known as the decoding centre. Recognition of cognate aa-tRNA closes the SSU shoulder domain towards the SSU body and head domains. Consequent ternary complex engagement of the LSU GTPase-activating centre (GAC), including the catalytic sarcin-ricin loop12 (SRL), induces rearrangements in the GTPase, including switch-I and switch-II remodeling, that trigger GTP hydrolysis"

They note that there seem to be at least two proofreading steps, both in activating the eEF1A and also afterwards, during the large swing of the tRNA towards the P site. And they note novel rolling motions of the human ribosome compared with the bacterial ribosome, to help explain some of its distinctive proofreading abilities, which may be adjustable in humans by regulatory processes. Thus we are gaining ever more detailed window on the heart of this process, which is foundational to the origin of life, central to all cells, and not without medical implications, since many poisons that bacteria have devised attack the ribosome, and several of our current antibiotics do likewise.


No comments: