Saturday, September 27, 2025

Dopamine: Get up and Go, or Lie Down and Die

The chemistry of motivation.

A recent paper got me interested in the dopamine neurotransmitter system. There are a limited number of neurotransmitters, (roughly a hundred), which are used for all communication at synapses between neurons. The more common transmitters are used by many cells and anatomical regions, making it hazardous in the extreme to say that a particular transmitter is "for" something or other. But there are themes, and some transmitters are more "niche" than others. Serotonin and dopamine are specially known for their motivational valence and involvement in depression, schizophrenia, addiction, and bipolar disorder, among many other maladies.

This paper described the reason why cancer patients waste away- a syndrome called cachexia. This can happen in other settings, like extreme old age, and in other illnesses. The authors ascribe cachexia (using mice implanted with tumors) to the immune system's production of IL6, one of scores of cytokines, or signaling proteins that manage the vast distributed organ that is our immune system. IL6 is pro-inflammatory, promoting inflammation, fever, and production of antibody-producing B cells, among many other things. These authors find that it binds to the area postrema in the brain stem, where many other blood-borne signals are sensed by the brain- signals that are generally blocked by the blood-brain barrier system.

The binding of IL6 at this location then activates a series of neuronal connections that these authors document, ending up inhibiting dopamine signaling out of the ventral tegmental area (VTA) in the lower midbrain, ultimately reducing dopamine action in the nucleus accumbens, where it is traditionally associated with reward, addiction, and schizophrenia. These authors use optically driven engineered neurons at an intermediate location, the parabrachial nucleus, (PBN), to reproduce how neuron activation there drives inhibition downstream, as the natural IL6 signal also does.  

Schematic of the experimental setup and anatomical locations. The graph shows how dopamine is strongly reduced under cachexia, consequent to the IL6 circuitry the authors reveal.

What is the rationale of all this? When we are sick, our body enters a quite different state- lethargic, barely motivated, apathetic, and resting. All this is fine if our immune system has things under control, uses our energy for its own needs, and returns us to health forthwith, but it is highly problematic if the illness goes on longer. This work shows in a striking and extreme way what had already been known- that prominent dopamine-driven circuits are core micro-motivational regulators in our brains. For an effective review of this area, one can watch a video by Robert Lustig, outlining at a very high level the relationship of the dopamine and serotonin systems.

Treatment of tumor-laden mice with an antibody to IL6 that reduces its activity relieves them of cachexia symptoms and significantly extends their lifespans.

It is something that the Buddhists understood thousands of years ago, and which the Rolling Stones and the advertising industry have taken up more recently. While meditation may not grant access to the molecular and neurological details, it seems to have convinced the Buddha that we are on a treadmill of desire, always unsatisfied, always reaching out for the next thing that might bring us pleasure, but which ultimately just feeds the cycle. Controlling that desire is the surest way to avoid suffering. Nowhere is that clearer than in addiction- real, clinical addictions that are all driven by the dopamine system. No matter what your drug of choice- gambling, sugar, alcohol, cocaine, heroin- the pleasure that they give is fleeting and alerts the dopamine system to motivate the user to seek more of the same. There are a variety of dopamine pathways, including those affecting Parkinson's and reproductive functions, but the ones at issue here are the mesolimbic and mesocortical circuits, that originate in the midbrain VTA and extend respectively to the nucleus accumbens in the lower forebrain, and to the cerebral cortex. These are integrated with the rest of our cognition, enabling motivation to find the root causes of a pleasurable experience, and raise the priority of actions that repeat those root causes. 

So, if you gain pleasure from playing a musical instrument, then the dopamine system will motivate you to practice more. But if you gain pleasure from cocaine, the dopamine system will motivate you to seek out a dealer, and spend your last dollar for the next fix. And then steal some more dollars. This system shows specifically the dampening behavior that is so tragic in addictions. Excess activation of dopamine-driven neurons can be lethal to those cells. So they adjust to keep activation in an acceptable range. That is, they keep you unsatisfied, in order to allow new stimuli to motivate you to adjust to new realities. No matter how much pleasure you give yourself, and especially the more intense that pleasure, it is never enough because this system always adjusts the baseline to match. One might think of dopamine as the micro-manager, always pushing for the next increment of action, no matter how much you have accomplished before, no matter how rosy or bleak the outlook. It gets us out of bed and moving through our day, from one task to the next.

In contrast, the serotonin system is the macro-manager, conveying feelings of general contentment, after a life well-lived and a series of true accomplishments. Short-circuiting this system with SSRIs like prozac carries its own set of hazards, like lack of general motivation and emotional blunting, but it does not have the risk of addiction, because serotonin, as Lustig portrays it, is an inhibitory neurotransmitter, with no risk of over-excitement. The brain does not re-set the baseline of serotonin the same way that it continually resets the baseline of dopamine.

How does all this play out in other syndromes? Depression is, like cachexia, at least in part syndrome of insufficient dopamine. Conversely, bipolar disorder in its manic phase appears to involve excess dopamine, causing hyperactivity and wildly excessive motivation, flitting from one task to the next. But what have dopamine antagonists like haloperidol and clozapine been used for most traditionally? As anti-psychotics in the treatment of schizophrenia. And that is a somewhat weird story. 

Everyone knows that the medication of schizophrenia is a haphazard affair, with serious side effects and limited efficacy. A tradeoff between therapeutic effects and others that make the recipient worse off. A paper from a decade ago outlined why this may be the case- the causal issues of schizophrenia do not lie in the dopamine system at all, but in circuits far upstream. These authors suggest that ultimately schizophrenia may derive from chronic stress in early life, as do so many other mental health maladies. It is a trail of events that raise the stress hormone cortisol, which diminishes cortical inhibition of hippocampal stress responses, and specifically diminishes the GABA (another neurotransmitter) inhibitory interneurons in the hippocampus. 

It is the ventral hippocampus that has a controlling influence over the VTA that in turn originates the relevant dopamine circuitry. The theory is that the ventral hippocampus sets the contextual (emotional) tone for the dopamine system, on top of which episodic stimulation takes place from other, more cognitive and perception-based sources. Over-activity of this hippocampal regulation raises the gain of the other signals, raising dopamine far more than appropriate, and also lowering it at other times. Thus treating schizophrenia with dopamine antagonists counteracts the extreme highs of the dopamine system, which in the nucleus accumbens can lead to hallucinations, delusions, paranoia, and manic activity, but it is a blunt instrument, also impairing general motivation, and further reducing cognitive, affect, parkinsonism, and other problems caused by low dopamine that occurs during schizophrenia in other systems such as the meso-cortical and the nigrostriatal dopamine pathways.

Manipulation of neurotransmitters is always going to be a rough job, since they serve diverse cells and pathways in our brains. Wikipedia routinely shows tables of binding constants for drugs (clozapine, for instance) to dozens of different neurotransmitter receptors. Each drug has its own profile, hitting some receptors more and others less, sometimes in curious, idiosyncratic patterns, and (surprisingly) across different neurotransmitter types. While some of these may occasionally hit a sweet spot, the biology and its evolutionary background has little relation to our current needs for clinical therapies, particularly when we have not yet truly plumbed the root causes of the syndromes we are trying to treat. Nor is precision medicine in the form of gene therapies or single-molecule tailored drugs necessarily the answer, since the transmitter receptors noted above are not conveniently confined to single clinical syndromes either. We may in the end need specific, implantable and computer-driven solutions or surgeries that respect the anatomical complexity of the brain.


Saturday, September 20, 2025

Gold Standard

The politics and aesthetics of resentment. Warning: this post contains thought crime.

I can not entirely fathom thinking on the right these days. It used to be that policy disputes occured, intelligent people weighed in from across a reasonable spectrum of politics, and legislation was hammered out to push some policy modestly forward (or backward). This was true for civil rights, environmental protection, deregulation, welfare reform, even gay marriage. That seems to be gone now. Whether it is the atomization of attention and thought brought on by social media, or the mercenary propaganda of organs like FOX news, the new mode of politics appears to be destructive, vindictive spite. A spiral of extremism.

It also has a definite air of resentment, as though policy is not the point, nor is power, entirely, but owning the libtards is the real point- doing anything that would be destructive of liberal accomplishments and ideals. We know that the president is a seething mass of resentments, but how did that transform alchemically into a political movement?

I was reading a book (Deep South) by Paul Theroux that provides some insight. It is generally a sour and dismissive, full of a Yankee's distain for the backwardness of the South. And it portrays the region as more or less third world. Time and again, towns are shadowed by factories closed due to off-shoring.  What little industry the South had prior to NAFTA was eviscerated, leaving agriculture, which is increasingly automated and corporatized. It is an awful story of regression and loss of faith. And the author of this process was, ironically, a Southerner- Bill Clinton. Clinton went off to be a smarty-pants, learned the most advanced economic theories, and concluded that NAFTA was a good deal for the US, as it was for the other countries involved, and for our soft power in the post-world war 2 world. The South, however, and a good deal of the Rust Belt, became sacrifice zones for the cheaper goods coming in from off-shore.

What seemed so hopeful in the post-war era, that America would turn itself into a smart country, leading the world in science, technology, as well as in political and military affairs, has soured into the realization that all the smart kids moved to the coasts, leaving a big hole in the middle of the country. The meritocracy accomplished what it was supposed to, establishing a peerless educational system that raised over half the population into the ranks of college graduates. But it opened eyes in other ways as well, freeing women from the patterns of patriarchy, freeing minorities from reflexive submission, and opening our history to quite contentious re-interpretation. And don't get me started on religion!


So there has been a grand conjunction of resentment, between a population sick of the dividends of the educational meritocracy over a couple of generations, and a man instinctively able to mirror and goad those resentments into a destructive political movement. His aesthetic communicates volumes- garish makeup, obscene ties, and sharing with Vladimir Putin a love of gold-gilded surfaces. To the lower class, it may read expensive and successful, but to the well educated, it reeks of cheapness, focusing on surface over substance, a bullying, mob aesthetic, loudly anti-democratic.

Reading the project 2025 plans for this administration, I had thought we would be looking at a return to the monetary gold standard. But no, gold has come up in many other guises, not that one. Gold crypto coins, Gold immigration card, Oval office gold, golden hair. But most insulting of all was the ordering up of gold standard science. The idea that the current administration is interested in, or capable of, sponsoring high quality personnel, information or policy of any kind has been thoroughly refuted by its first months in office. The resentment it channels is directed against, first and foremost, those with moral integrity. Whether civil servants, diplomats, or scientists, all who fail to bend the knee are enemies of this administration. This may not be what the voters had in mind, but it follows from the deeper currents of frustration with liberal dominance of the meritocracy and culture.

But what is moral integrity? I am naturally, as a scientist, talking about truth. A morality of truth, where people are honest, communicate in truthful fashion, and care about reality, including the reality of other people and their rights / feelings. As the quote has it, reality has a well-known liberal bias. But it quickly becomes apparent that there are other moralities. What we are facing politically could be called a morality of authority. However alien to my view of things, this is not an invalid system, and it is central to the human condition, modeled on the family. Few social systems are viable without some hierarchy and relation of submission and authority. How would a military work without natural respect for authority? And just to make this philosophical and temperamental system complete, one can posit a morality of nurture as well, modeled on mothering, unconditional love, and encouragement.

This triad of moralities is essential to human culture, each component in continual dynamic tension. Our political moment shows how hypertrophy of the morality of authority manifests. Lies and ideology are a major tool, insisting that people take their reality from the leader, not their own thoughts or from experts who hew to a morality of truth. Unity of the culture is valued over free analysis. As one can imagine, over the long run of human history, the moralities of nurture and authority have been dominant by far. They are the poles of the family system. It was the Enlightenment that raised the morality of truth as an independent pole in this system for the culture at large, not just for a few scholars and clerics. Not that truth has not always been an issue in people's lives, with honesty a bedrock principle, and people naturally caring whether predicted events really happen, whether rain really falls, the sun re-appears, etc. But as an organizing cultural principle that powers technological and thus social and cultural progress, it is a somewhat recent phenomenon.

It is notable that scientists, abiding by a morality of truth, tend to have very peaceful cultures. They habitually set up specialized organizations, mentor students, and collaborate nationally and internationally. Scientists may work for the military, but within their own cultures, have little interest in starting wars. It is however a highly competitive culture, with critical reviewing, publishing races, and relentless experimentation designed to prove or disprove models of reality. Authority has its place, as recognized experts get special privileges, and established facts tend to be hard to move. At risk of sounding presumptuous, the morality of truth represents an enormous advance in human culture, not to be lightly dismissed. And the recent decades of science in the US have been a golden age that have produced a steady stream of technological advance and international power, not to mention Nobel prizes and revelations of the beauty of nature. That is a gold standard. 


Saturday, September 13, 2025

Action at the Heart of Action

How myosin works as a motor against actin to generate motion.

We use our muscles a lot, but do we know how they work? No one does, fully, but quite a bit is known. At the core is a myosin motor protein, which levers against actin filaments that are ordered in almost crystalline arrays inside muscle cells. This system long predates the advent of muscles, however, since all of our cells contain actin and myosin, which jointly help cells move around, and move cargoes around within cells. Vesicles, for instance, often traffic to where they are needed on roads of actin. The human genome encodes forty different forms of myosin, specialized for all sorts of different tasks. For example, hearing (and balance) depends in tiny rod-like hair cells filled with tight bundles of actin. Several myosin genes have variants associated with severe hearing loss, because they have important developmental roles in helping these structures form. Actin/myosin is one of the ancient transportation systems of life (the other is the dynein motor and microtubules).

Myosin uses ATP to power motion, and a great deal of work has gone into figuring how this happens. A recent paper took things to a new level by slowing down the action significantly. They used a mutant form of myosin that is specifically slower in the power stroke. And they used a quick mix and spray method that cut times between adding actin to the cocked myosin, and getting it frozen in a state ready for cryo-electron microscopy, down to 10 milliseconds. The cycle of the myosin motor goes like this:

  • End of power stroke, myosin bound to actin
  • ATP binds to myosin, unbinds from actin
  • Lever arm of myosin cocks back to a primed state, as ATP is hydolyzed to ADP + Pi
  • ADP is present, and myosin binds to actin again
  • Actin binding triggers both power stroke of the lever, and release of Pi and ADP
  • End of power stroke, myosin bound to actin

A schematic of the myosin/actin cycle. Actin is in pink, myosin in gray and green, with cargoes (if any, or bundle of other myosins as in muscle) linked below the green lever.

The structure that these researchers came up with is:

Basic structure of myosin (colors) with actin (gray), in two conformations- primed or post-power stroke. The blue domain at top (converter) is where the lever extension is attached and is the place with the motion / force is focused. But note how the rest of the myosin structure (lavender, green, yellow, red) also shifts subtly to assist the motion. 

They also provide a video of these transformations, based on molecular dynamics simulations.

Sampling times between 10 milliseconds and 120 milliseconds, they saw structures in each of the before and after configurations, but none in intermediate states. That indicates that the motor action is very fast, and the cocking/priming event puts the enzyme in an unstable configuration. The power stroke may not look like much, but the converter domain is typically hitched to a long element that binds to cargos, leading (below) to quite a bit of motion per stroke and per ATP. About 13 actin units can be traversed along the filament in a single bound, in fact. It is also noteworthy that this mechanism is very linear. The converter domain flips in the power stroke without twisting much, so that cargoes progress linearly along the actin road, without much loss of energy from side-to-side motion.

Fuller picture of how myosin (colored) with its lever extensions (blue) walks along actin (gray) by large steps, that cross up to 13 actin subunits at a time. The inset describes the very small amount of twist that happens, small enough that myosin walks in a rather straight line and easily finds the next actin landing spot without a lot of feeling about.

Finally, these authors delved into a few more details about the big structural transition of the power stroke. Each of these show subtle shifts in the structure that help the main transition along. In f/g the HCM loop dips down to bind actin more tightly. In h/i the black segment already bound to actin squinches down into a new loop, probably swinging myosin slightly over to the right. This segment is at the base of the green segment, so has strong transmission effects on the power stroke. In j/k the ATP binding site, now holding ADP and Pi, loses the phosphate Pi, and there are big re-arrangements of all the surrounding loops- green, lavender, and blue. These images do not really do justice to the whole motion, nor really communicate how the ATP site sends power through the green domain to the converter (top, blue) domain which flips for the power stroke. The video referenced above gives more details, though without much annotation.

Detailed closeups of the before/after power stroke structures. Coloring is consistent with the strucutres above.


  • Reaping what one sows.
  • Oh, and about guns.
  • A room of one's own.

Saturday, September 6, 2025

How to Capture Solar Energy

Charge separation is handled totally differently by silicon solar cells and by photosynthetic organisms.

Everyone comes around sooner or later to the most abundant and renewable form of energy, which is the sun. The current administration may try to block the future, but solar power is the best power right now and will continue to gain on other sources. Likewise, life started by using some sort of geological energy, or pre-existing carbon compounds, but inevitably found that tapping the vast powers streaming in from the sun was the way to really take over the earth. But how does one tap solar energy? It is harder than it looks, since it so easily turns into heat and lost energy. Some kind of separation and control are required, to isolate the power (that is to say, the electron that was excited by the photon of light), and harness it to do useful work.

Silicon solar cells and photosynthesis represent two ways of doing this, and are fundamentally, even diametrically, different solutions to this problem. So I thought it would be interesting to compare them in detail. Silicon is a semiconductor, torn between trapping its valence electrons in silicon atoms, or distributing them around in a conduction band, as in metals. With elemental doping, silicon can be manipulated to bias these properties, and that is the basis of the solar cell.

Schematic of a silicon solar cell. A static voltage exists across the N-type to P-type boundary, sweeping electrons freed by the photoelectric effect (light) up to the conducting electrode layer.


Solar cells have one side doped to N status, and the bulk set to P doping status. While the bulk material is neutral on both sides, at the boundary, a static charge scheme is set up where electrons are attracted into the P-side, and removed from the N-side. This static voltage has very important effects on electrons that are excited by incoming light and freed from their silicon atoms. These high energy electrons enter the conduction band of the material, and can migrate. Due to the prevailing field, they get swept towards the N side, and thus are separated and can be siphoned off with wires. The current thus set up can exert a pressure of about 0.6 volt. That is not much, nor is it equivalent to the 2 to 3 electron volts received from each visible photon. So a great deal of energy is lost as heat.

Solar cells do not care about capturing each energized electron in detail. Their purpose is to harvest a bulk electrical voltage + current with which to do some work in our electrical grids. Photosynthesis takes an entirely different approach, however. This may be mostly for historical and technical reasons, but also because part of its purpose is to do chemical work with the captured electrons. Biology tends to take a highly controlling approach to chemistry, using precise shapes, functional groups, and electrical environments to guide reactions to exact ends. While some of the power of photosynthesis goes toward pumping protons out of the membrane, setting up a gradient later used to make ATP, about half is used for other things like splitting water to replace lost electrons, and making reducing chemicals like NADPH.

A portion of a poster about the core processes of photosynthesis. It provides a highly accurate portrayal of the two photosystems and their transactions with electrons and protons.

In plants, photosynthesis is a chain of processes focused around two main complexes, photosystems I and II, and all occurring within membranes- the thylakoid membranes of the chloroplast. Confusingly, photosystem II comes first, accepting light, splitting water, pumping some protons, and sending out a pair of electrons on mobile plastoquinones, which eventually find their way to photosystem I, which jacks up their energy again using another quantum of light, to produce NADPH. 

Photosystem II is full of chlorophyll pigments, which are what get excited by visible photons. But most of them are "antenna" chlorophylls, passing the excitation along to a pair of centrally located chlorophylls. Note that the light energy is at this point passed as a molecular excitation, not as a free electron. This passage may happen by Förster resonance energy transfer, but is so fast and efficient that stronger Redfield coupling may be involved as well. Charge separation only happens at the reaction center, where an excited electron is popped out to a chain of recipients. The chlorophylls are organized so that the pair at the reaction center have a slightly lower energy of excitation, thus serve as a funnel for excitation energy from the antenna system. These transfers are extremely rapid, on the picosecond time scale.

It is interesting to note tangentially that only red light energy is used. Chlorophylls have two excitation states, excited by red light (680 nm = 1.82 eV) and blue light (400-450 nm, 2.76 eV) (note the absence of green absorbance). The significant extra energy from blue light is wasted, radiated away to let it (the excited electron) relax to the lower excitation state, which is then passed though the antenna complex as though it had come from red light. 

Charge separation is managed precisely at the photosystem II reaction center through a series of pigments of graded energy capacity, sending the excited electron first to a neighboring chlorophyll, then to a pheophytin, then to a pair of iron-coordinated quinones, which then pass two electrons to a plastoquinone that is released to the local membrane, to float off to the cytochrome b6f complex. In photosystem II, another two photons of light are separately used to power the splitting of one water molecule, (giving two electrons and pumping two protons). So the whole process, just within photosystem II, yields, per four light quanta, four protons pumped from one side of the membrane to the other. Since the ATP sythetase uses about three protons per ATP, this nets just over one ATP per four photons. 

Some of the energetics of photosystem II. The orientations and structures of the reaction center paired chlorophylls (Pd1, Pd2), the neighboring chlorophyll (Chl), and then the pheophytin (Ph) and quinones (Qa, Qb) are shown in the inset. Energy of the excited electron is sacrifice gradually to accomplish the charge separation and channeling, down to the final quinone pairing, after which the electrons are released to a plastoquinone and send to another complex in the chain.

So the principles of silicon and biological solar cells are totally different in detail, though each gives rise to a delocalized field, one of electrons flowing with a low potential, and the other of protons used later for ATP generation. Each energy system must have a way to pop off an excited electron in a controlled, useful way that prevents it from recombining with the positive ion it came from. That is why there is such an ornate conduction pathway in photosystem II to carry that electron away. Overall, points go to the silicon cell for elegance and simplicity, and we in our climate crisis are the beneficiaries, if we care to use it. 

But the photosynthetic enzymes are far, far older. A recent paper pointed out that no only are photosystems II and I clearly cousins of each other, but it is likely that, contrary to the consensus heretofore, photosystem II is the original version, at least of the various photosystems that currently exist. All the other photosystems (including those in bacteria that lack oxygen stripping ability) carry traces of the oxygen evolving center. It makes sense that getting electrons is a fundamental part of the whole process, even though that chemistry is quite challenging. 

That in turn raises a big question- if oxygen evolving photosystems are primitive (originating very roughly with the last common ancestor of all life, about four billion years ago) then why was earth's atmosphere oxygenated only from two billion years ago onward? It had been assumed that this turn in Earth history marked the evolution of photosystem II. The authors point out additionally that there is also evidence for the respiratory use of oxygen from these extremely early times as well, despite the lack of free oxygen. Quite perplexing, (and the authors decline to speculate), but one gets the distinct sense that possibly life, while surprisingly complex and advanced from early times, was not operating at the scale it does today. For example, colonization of land had to await the buildup of sufficient oxygen in the atmosphere to provide a protective ozone layer against UV light. It may have taken the advent of eukaryotes, including cyanobacterial-harnessing plants, to raise overall biological productivity sufficiently to overcome the vast reductive capacity of the early earth. On the other hand, speculation about the evolution of early life based on sequence comparisons (as these authors do) is notoriously prone to artifacts, since what evolves at vanishingly slow rates today (such as the photosystem core proteins) must have originally evolved at quite a rapid clip to attain the functions now so well conserved. We simply can not project ancient ages (at the four billion year time scales) from current rates of change.