Saturday, October 12, 2024

Pumping DNA

Arnold has nothing on the DNA pumps that load phages.

DNA is a very unwieldy molecule. Elegant in concept, but as organisms accumulated more features and genes, it got extremely long and twisty. So a series of management proteins arose, such as helicases and gyrases to relieve the torsional tension, and topoisomerases to cut and pass strands through each other to resolve knots. Another class is DNA pumps, which can forcefully travel along DNA to thread it into useful spaces, like the head of a phage, or a domain in our nucleus, to facilitate transcriptional isolation or organized recombination and synapsis. While other motors, acting on actin and microtubules, manage DNA segregation during mitosis, cell division, and cell movement, true DNA motors deal directly with DNA.

An iconic electron micrograph of a phage with its head blown open. The previously enclosed DNA is splayed about, suggesting the capsid's great capacity for DNA, and great pressure it was under. Inset shows an intact phage. Note the landing tentacles, which attach to the target bacterium.

There are several types of DNA pump, the lower-powered of which I have reviewed previously. The champions in terms of force, however, are the pumps that fill phage heads. Phages are viruses that infect bacteria, and they operate under a variety of limitations. Size is one- they have to be small and have small genomes, due to the small size of their targets, the brevity of their life cycle, and the mathematics of scattered propagation. Bacterial cells are under turgor pressure, of about three atmospheres, and have strong cell walls to hold everything in. So their infecting phages have several barriers to overcome. One solution is to be under even higher pressure themselves, up to about sixty atmospheres. That way, once the injection system has cut through the cell wall and inner membrane, the phage genome, which is pretty much the only thing in the phage head (or capsid), can shoot out rapidly and take over the cell. 

Schematic of late phage development, where the motor (blue) docks to the phage head and fills it with DNA, after which the tail assembly is attached.

How does the DNA loading pump work? It is closely docked into the phage head structure, has a pentagonal structure attached to the phage head, and a loosely attached, 12-sided inner rosette that they describe as a sort of bearing or ball-race. The outer pentagon has an ATPase at each vertex, and these fire sequentially during the pumping mechanism. Each ATP advances the DNA by about two base pairs. Presumably the head has a structure that guides the DNA into regular loops around its inside walls. 

Structure of the dodecameric portion of the phage DNA pump, without the ATPase pentameric portion. Obviously, the DNA threads through the center.

In the diagram below (reference), three steps are shown. First, (a, top), the "I" ATPase node (red) is linked to the "J" and "A" rosette nodes. "A" is where the rosette hooks into the DNA (red). Next, the rosette is expanded a bit, bringing "A" out of register from "I" and "C" into register with "II". At the same time, "C" links to the DNA two base pairs down from where "A" latched into it. In the third step, the rosette squashes again, the DNA ends up raised by two base pairs, and the process can start all over. It is a bit of a sleeve/ratchet mechanism. They do not speculate at this point which of these steps is the power stroke- were the ATP is hydrolyzed. Getting only two base pairs into the head per ATP doesn't seem very efficient, but it is evidently at the end of packaging, when the pressure rises to extreme levels, where this pump shines. And it can get a 19,000 bp genome into a phage head in three minutes, (~100 bp per second), so it isn't a slouch when it comes to speed, either. 

Model of how this pump works. See text above for details.


Not only is this pump an amazing and powerful bit of biotechnology, able to compress DNA to sixty atmospheres, but it is a fourth fundamental type of motor, in addition to the rotary motors as found in flagella, the linear motors found along actin and microtubules, and the DNA threading/looping motors of condensin/cohesin.


  • The 2024 Nobel prizes show the close nexus between computers and molecular biology. The original finding of miRNA complementarity could not have been made without a computerized sequence search.
  • When truth is a gaffe, and lies are routine.
  • Could crypto be any worse or more corrupting?

No comments: