Saturday, July 5, 2025

Water Sensing by WNKs

WNK kinases sense osmotic condition as well as chloride concentration to keep us hydrated.

"Water, water, everywhere, nor any drop to drink." This line from Coleridge evokes the horror of thirst on the ghost ship, as its crew can not drink salt water. Other species can, but ocean water is too strong for us, roughly four times as salty as our blood. Nevertheless, our bodies have exquisite mechanisms to manage salt concentrations, with each cell managing its own traffic, and the kidneys managing most electrolytes in the blood. It is a very difficult task that has led to clever evolutionary solutions like counter-current exchange across the nephron loops, and stark differences in those nephron cell membranes, over water or salt permeability, to maximize use of passive ion gradients. But at the heart of the system, one has to know what is going on- one has to monitor all of the electrolyte levels and overall osmotic stress.

One such monitoring thermostat for chemical balances turns out to be the WNK kinases- a family of four proteins in humans that control (by phosphorylating them) a secondary set of regulators, which in turn control many salt transporters, such as SLC12A2 and SLC12A4. These latter are passive, though regulated, co-transporters that allow chloride across the membrane when combined with a matching cation like sodium or potassium. The cations drive the process, because they are normally kept (pumped) to strong gradients across cell membranes, with high sodium outside, and high potassium inside. Thus when these co-transporters are turned on (or off), they use the cation gradients to control the chloride level in the cell, in either direction, depending on the particular transporter involved. Since the sodium and potassium levels are held at relatively static, pumped levels, it is the chloride level that helps control the overall osmotic pressure in a finely tuned way. 

A few of the ionic transactions done in the kidney.


The WNK kinases were discovered genetically, in families that showed hypertension and raised levels of chloride and potassium in the blood. These syndromes mirrored complementary syndromes caused by mutations in SLC12A2, the Na/Cl co-transporter, indicating the WNK kinases inhibit SLC12A2. It turns out that WNK, which are named for an unusual catalytic site (with no lysine [K]) are sensors for both chloride, which inhibit them, and for osmotic pressure, which activates them. They are expressed in different locations and have slightly different activities, (and control many more transporters and processes than discussed here), but I will treat them interchangeably here. The logic of all this is that, if osmotic pressure is low, that means that internal salt levels are low, and chloride needs to be let into the cell, by activating the cation/chloride co-transporters. Likewise, if chloride levels inside the cell are high, the WNK kinase needs to be inhibited, reducing chloride influx. 

A recent paper (and prior work from the same lab) discussed structures of the WNK regulators that explain some of this behavior. WNK kinases are dimers at rest, and in that state mutually inhibit their auto-phosphorylation. It is separation and auto-phosphorylation that turns them on, after which they can then phosphorylate their target proteins, such as the secondary kinases STK39 and OSR1. The authors had previously found a chloride binding site right at the active site of the enzyme that promotes dimerization. In the current paper, they reveal a couple of clusters of water molecules which similarly affect the dimerization, and thus activity, of the enzyme.

Location of the inhibitory chloride (green) binding site in WNK1. This is right in the heart of the protein, near the active kinase site and dimerization interface with the other WNK1 partner.

While X-ray crystal structures rarely show or care much about water molecules, (they are extremely small and hard to track), here, those waters were hypothesized to be important, since WNK kinases are responsive to osmotic pressure. One way to test this is to add PEG400 to the reaction. This is a polymer (400 molecular weight) that is water-like and inert, but large in a way that crowds out water molecules from the solution. At 15% or 25% of the volume, PEG400 displaces a lot of water, lowers the water activity of a solution, and thus increases the osmotic pressure- that is its tendency to draw water in from outside. Plants use osmotic pressure as turgor pressure, and our cells, not having cells walls, need to always be at an osmotic pressure similar to the outside, lest they swell up, or conversely shrink away. Anyhow, WKN kinases can be switched from an inactive to active state just by adding PEG400- a sure sign that they are sensors for osmotic pressure.


Water network (blue dots) within the WNK1 kinase protein. Most of the protein is colored teal, while the active site kinase area is red, and a tiny amount of the dimer partner is colored green. When this crystal is osmotically challenged, the water network collapses from 14 waters to 5, changing the structure and promoting dissociation of the dimer. In B is show a sequence alignment over a wide evolutionary range where the amino acids that coordinate the water network (yellow) are clearly very well conserved, thus quite important.

Above is shown a closeup of the WNK1 protein, showing in teal the main backbone, including the catalytic loop. In red is the activation loop of the kinase, and in green is a little bit from the other WNK1 protein in the dimer pair. The chloride, if bound, would be located right at top center, at K375. Shown in blue are a series of fourteen water molecules that make up one so-called water network. Another smaller one was found at the interface between the two WNK1 proteins. The key finding was that, if crystalized with PEG400, this water network collapsed to only five water molecules, thereby changing the structure of the protein significantly and accounting for the dissolution of the dimer. 

Superposition of WNK1 with PEG400 (purple) and activated vs WNK1 without, in an inactive state (teal). Most of the blue waters would be gone in the purple state as well. This shows the significant structural transition, particularly in the helixes above the active site, which induce (in the purple state) dissociation of the dimer, auto-phosphorylation, and activation.

Thus there is a delicate network of water molecules tentatively held together within this protein that is highly sensitive to the ambient water activity (aka osmotic pressure). This dynamic network provides the mechanism by which the WNK proteins sense and transmit the signal that the cell requires a change in ionic flows. Generally the point is to restore homeostatic balance, but in the kidney these kinases are also used to control flows for the benefit of the organism as a whole, by regulating different transporters in different parts of the same cell- either on the blood side, or the urine side.