Saturday, October 21, 2023

One Pump to Rule ... a Tiny Vesicle

Synaptic vesicles are powered by a single pump that has two speeds- on and off.

While some neural circuits are connected by direct electrical contact, via membrane pores, most use a synapse, where the electrical signal stops, gets turned into secretion of a neurotransmitter molecule, which crosses to the next cell, where receptors pick it up and boot up a new electrical signal. A slow and primitive system, doubtless thanks to some locked-in features of our evolutionary history. But it works, thanks to a lot of improvements and optimization over the eons.

The neurotransmitters, of which there are many types, sit ready and waiting at the nerve terminals in synaptic vesicles, which are tiny membrane bags that are specialized to hold high concentrations of their designated transmitter, and to fuse rapidly with the (pre-) synaptic membrane of their nerve terminal, to release their contents when needed, into the synaptic cleft between the two neurons. While the vesicle surfaces are mostly composed of membranes, it is the suite of proteins on their surfaces that provide all the key functions, such as transport of neurotransmitters, sensing of the activating nerve impulse (voltage), fusing with the plasma membrane, and later retrieval of the fused membrane patches/proteins and recycling into new synaptic vesicles.

Experimental scheme- synaptic vesicles are loaded with a pH-sensitive fluorescent dye that tells how the V-ATPase (pink) is doing pumping protons in, powered by ATP from the cytoplasm. The proton gradient is then used by the other transporters in the synaptic vesicle (brown) to load it with its neurotransmitter.

The neurotransmitters of whatever type are loaded into synaptic vesicles by proton antiporter pumps. That is, one or two protons are pumped out in exchange for a molecule of the transmitter being pumped in. They are all proton-powered. And there is one source of that power, an ATP-using proton pump called a V-type ATPase. These ATPases are deeply related to the F-type ATP synthase that does the opposite job, in mitochondria, making ATP from the proton gradient that mitochondria set up from our oxygen-dependent respiration / burning of food. Both are rotors, which spin around as they carefully let protons go by, while a separate domain of the protein- attached via stator and rotor segments- makes or breaks down ATP, depending on the direction of rotation. Both enzymes can go in either direction, as needed, to pump protons either in or out, and traverse the reaction ADP <=> ATP. It is just an evolutionary matter of duplication and specialization that the V-type and F-type enzymes have taken separate paths and turn up where they do.

Intriguingly, synaptic vesicles are each served by one V-type ATPase. One is enough. That means that one molecule has to flexibly respond to variety of loads, from the initial transmitter loading, to occasional replenishment and lots of sitting around. A recent paper discussed the detailed function of the V-type ATPase, especially how it handles partial loads and resting states. For the vesicles spend most of their time full, waiting for the next nerve impulse to come along. The authors find that this ATPase has three states it switches between- pumping, resting, and leaking. 

Averaging over many molecules/vesicles, the V-type ATPase pump operates as expected. Add ATP, and it acidifies its vesicle. The Y-axis is the fluorescent signal of proton accumulation in the vesicle. Then when a poison of the ATPase is added (bafilomycin), the gradient dissipates in a few minutes.

They isolate synaptic vesicles directly from rat brains and then fuse them with smaller experimental vesicles that contain a fluorescent tracer that is sensitive to pH- just the perfect way to monitor what is going on in each vesicle, given a powerful enough microscope. The main surprise was the stochastic nature of the performance of single pumps. Comparing the average of hundreds of vesicles (above) with a trace from a single vesicle (below) shows a huge difference. The single vesicle comes up to full acidity, but then falls back for long stretches of time. These vesicles are properly loaded and maintained on average, but individually, they are a mess, falling back to pH / chemical baseline with alarming frequency.


On the other hand, at the single molecule level, the pump is startlingly stochastic. Over several hours, it pumps its vesicle full of protons, then quits, then restarts several times.

The authors checked that the protons had no other way out that would look like this stochastic unloading event, and concluded that the loss of protons was monotonic, thus due to general leakage, not some other channel that occasionally opens to let out a flood of protons. But then they added an inhibitor that blocks the V-ATPase, which showed that particularly (and peculiarly) rapid events of proton leakage come from the V-ATPase, not general membrane leakage. They have a hard time explaining this, discounting various theories such that it represents ATP synthesis (a backwards reaction, in the face of overwhelming ratios of ATP/ADP in their experiment), or that the inactive mode of the pump can switch to a leakage mode, or that the pump naturally leaks a bit while it operates in the forward direction. It appears that only while the pump is on and churning through ATP, it can occasionally fail catastrophically and leak out a flood of protons. But then it can go on as if nothing had happened and either keep pumping or take a rest break.

Regulation by ATP is relatively minor, with a flood of ATP helping keep the pump more active longer. But physiological concentrations tend to be stable, so not very influential for pumping rates. These are two separate individual pumps/vesicles shown, top and bottom. It is good to see the control- the first segment of time when no ATP was present and the pump could not run at all. But then look at the bottom middle trace- plenty of ATP, but nothing going on- very odd. Lastly, the sudden unloading seen in some of these traces (bottom right) is attributed to an extremely odd leakage state of the same V-ATPase pump. Not something you want to see, generally.

The main finding is that this pump has quite long dwell times (3 minutes or so) under optimal conditions, and switches with this time period between active pumping and an inactive resting state. And that the pumping dwell time is mostly regulated, not by the ambient ATP concentration, but by the proton gradient, which is expressed by some combination of the charge differential across the vesicle membrane and the relative proton concentration gradient (the chemical gradient). It is a bit like a furnace, which has only two speeds- on or off, though in this case the thermostat is pretty rough. They note that other researchers have noted that synaptic vesicles seem to have quite variable amounts of transmitter, which must derive from the variability of this pump seen here. But averaged over the many vesicles fused during each neuronal firing, this probably isn't a big deal.

The behavior of this pump is a bit weird, however, since most machines that we are familiar with show more gradual breakdowns under stress, straining and slowing down. But here, the pump just decides to shut down for long periods of time, generally when the vesicle is fully charged up, but sometimes when it is not. It is a reflection that we are near the quantum level here, dealing with molecules that are very large in some molecular sense, but still operating at the atomic scale, particularly at the key choke points of this kind of protein that surely involve subtle shifts of just a few atoms that impart this regulatory shift, from active to inactive. What is worse, the pump sometimes freaks out completely and, while in its on state, switches to a leaking state that lets out protons ten times faster than the passive leakage through the rest of the vesicle membrane. The authors naturally urge deeper structural studies of what might be going on!