Tumor cells not only escape normal cell proliferation controls, but some of them eat nearby cells.
Our cells live in an uneasy truce. Cooperation is prized and specialization into different cell types, tissues, and organs is pervasive. But deep down, each cell wants to grow and survive, prompting many mechanisms of control, such as cell suicide (apoptosis) and immunological surveillance (macrophages, killer T-cells). Cancer is the ultimate betrayal, not only showing disregard for the ruling order, but in its worst forms killing the whole organism in a pointless drive for growth.
A fascinating control mechanism that has come to prominence recently is cellular senescence. In petri dishes, cells can only be goosed along for a few dozen cycles of division until they give out, and become senescent. Which is to say, they cease replicating but remain alive. It was first thought that this was another mechanism to keep cancer under control, restricting replication to "stem" cells and their recent progeny. But a lot of confusing and interesting observations indicate that the deeper meaning of senescence lies in development, where it appears to function as an alternate form of cell suicide, delayed so that tissues are less disrupted.
Apoptosis is used very widely during development to reshape tissues, and senescence is used extensively as well in these programs. Senescent cells are far from quiescent, however. They have high metabolic activity and are particularly notorious for secreting a witches' brew of inflammatory cytokines and other proteins- the senescence-associated secretory phenotype, or SASP. in the normal course of events, this attracts immune system cells which initiate repair and clearance operations that remove the senescent cells and make sure the tissue remains on track to fulfill its program. These SASP products can turn nearby cells to senescence as well, and form an inflammatory micro-environment that, if resolved rapidly, is harmless, but if persistent, can lead to bad, even cancerous local outcomes.
The significance of senescent cells has been highlighted in aging, where they are found to be immensely influential. To quote the wiki site:
"Transplantation of only a few (1 per 10,000) senescent cells into lean middle-aged mice was shown to be sufficient to induce frailty, early onset of aging-associated diseases, and premature death."
The logic behind all this seems to be another curse of aging, which is that while we are young, senescent cells are cleared with very high efficiency. But as the immune system ages, a very small proportion of senescent cells are missed, which are, evolutionarily speaking, an afterthought, but gradually accumulate with age, and powerfully push the aging process along. We are, after all, anxious to reduce chronic inflammation, for example. A quest for "senolytic" therapies to clear senescent cells is becoming a big theme in academia and the drug industry and may eventually have very significant benefits.
Another odd property of senescent cells is that their program, and the effects they have on nearby cells, resemble to some partial degree those of stem cells. That is, the prevention of cell death is a common property, as is the prevention of certain controls preventing differentiation. This brings us to tumor cells, which frequently enter senescence under stress, like that of chemotherapy. This fate is highly ambivalent. It would have been better for such cells to die outright, of course. Most senescent tumor cells stay in senescence, which is bad enough for their SASP effects in the local environment. But a few tumor cells emerge from senescence, (whether due to further mutations or other sporadic properties is as yet unknown), and they do so with more stem-like character that makes them more proliferative and malignant.
A recent paper offered a new wrinkle on this situation, finding that senescent tumor cells have a novel property- that of eating neighboring cells. As mentioned above, senescent cells have high metabolic demands, as do tumor cells, so finding enough food is always an issue. But in the normal body, only very few cells are empowered to eat other cells- i.e. those of the immune system. To find other cells doing this is highly unusual, interesting, and disturbing. It is one more item in the list of bad things that happen when senescence and cancer combine forces.
A senescent tumor cell (green) phagocytoses and digests a normal cell (red). |